Datasheet for BLE SoC ST17H56

DS-ST17H56-E1

Ver 0.8.0

2020/11/24

Keyword:

BLE; 2.4GHz; Features; Package; Pin layout; Memory; MCU; Working modes; Wakeup sources; RF Transceiver; Baseband; Clock; Timers; Interrupt; Interface; PWM; QDEC; ADC; PGA; AES; Electrical specification

Brief:

This datasheet is dedicated for BLE SoC ST17H56. In this datasheet, key features, working mode, main modules, electrical specification and application of the ST17H56 are introduced.

Revision History

Version	Major Changes	Date	Author
0.8.0	Preliminary release	2020/11	CLX, YLJ, YH

1 Table of contents

1	Ove	ervie	w	. 6
	1.1	Bloc	ck diagram	. 6
	1.2	Key	features	. 7
	1.2.	1	General features	. 7
	1.2.	2	RF Features	. 8
	1.2.	.3	Features of power management module	. 8
	1.3	Тур	ical application	. 9
	1.4	Ord	ering information	. 9
	1.5	Pac	kage	. 9
	1.6	Pin	layout	11
	1.6.	1	Pin layout for ST17H56	11
	1.6.	2	Notes	12
2	Me	mory	y and MCU	13
	2.1	Me	emory	13
	2.1.	1	SRAM/Register	13
	2.1.	2	OTP	13
	2.2	Fir	mware encryption	14
	2.3	M	CU	14
	2.4	W	orking modes	14
	2.4.	1	Active mode	14
	2.4.	2	Idle mode	15
	2.4.	.3	Power-saving mode	15
	2.5	Res	et	17
	2.6	Pow	ver Management	18
	2.6.	1	Digital LDO	18
	2.6.	2	VBUS LDO	18
	2.6.	.3	Power-On-Reset (POR) and Brown-out detect	18
	2.6.	4	Working mode switch	21
	2.7	Wal	keup sources	22
	2.7.	1	Wakeup source – 32kHz timer	22
	2.7.	2	Wakeup source – IO	22
	2.7.	.3	Register table	22
3	BLE	/2.4	G RF Transceiver	24
	3.1	Bloc	ck diagram	24
	3.2	Fun	ction description	24
	3.2.	1	Air interface data rate and RF channel frequency	24
	3.3	Base	eband	24
	3.3.	1	Packet format	25
	3.3.	3	RSSI and frequency offset	25

4	Clock		26
	4.1 Clo	ock sources	26
	4.2 Sy	stem clock	27
	4.3 M	odule clock	27
	4.3.1	System Timer clock	27
	4.3.2	QDEC clock	27
	4.4 Re	gister table	28
5	Timers.		29
	5.1 Tim	er0~Timer2	29
	5.1.1	Register table	29
	5.1.2	Mode0 (System Clock Mode)	30
	5.1.3	Mode1 (GPIO Trigger Mode)	30
	5.1.4	Mode2 (GPIO Pulse Width Mode)	31
	5.1.5	Mode3 (Tick Mode)	32
	5.1.6	Watchdog	32
	5.2 32k	Hz LTIMER	33
	5.3 Syst	em Timer	33
6	Interrup	ot System	36
	6.1 Inte	rrupt structure	36
	6.2 Reg	ister configuration	36
	6.2.1	Enable/Mask interrupt sources	37
	6.2.2	Interrupt mode and priority	37
	6.2.3	Interrupt source flag	38
7	Interfac	e	39
	7.1 GPI	0	39
	7.1.1	Basic configuration	39
	7.1.1	.1 GPIO lookup table	39
	7.1.1	.2 Multiplexed functions	41
	7.1.1	.3 Drive strength	41
	7.1.2	Connection relationship between GPIO and related modules	41
	7.1.3	Pull-up/Pull-down resistor	44
		5	
	7.3 I2C		46
	7.3.1	Communication protocol	46
	7.3.2	Register table	46
	7.3.3	I2C Slave mode	47
	7.3.3	.1 DMA mode	48
	7.3.3	.2 Mapping mode	48
		I2C Master mode	
	7.3.4	.1 I2C Master Write transfer	49
	7.3.4	.2 I2C Master Read transfer	50
	7.4 UAF	RT	50

8	PW	M	53
	8.1	Register table	53
	8.2	Enable PWM	55
	8.3	Set PWM clock	55
	8.4	PWM waveform, polarity and output inversion	55
	8.4.	1 Waveform of signal frame	55
	8.4.	2 Invert PWM output	55
	8.4.	3 Polarity for signal frame	56
	8.5	PWM mode	56
	8.5.	1 Continuous mode	56
	8	3.5.1.1 Set PWM clock mode	57
	8.6	PWM interrupt	57
9	Qua	adrature Decoder	58
	9.1	Input pin selection	58
	9.2	Common mode and double accuracy mode	58
	9.3	Read real time counting value	60
	9.4	QDEC reset	61
	9.5	Other configuration	61
	9.6	Timing sequence	62
	9.7	Register table	63
10) SAR	ADC	64
	10.1	Power on/down	
	10.2	ADC clock	64
	10.3	ADC control in auto mode	64
	10.3	3.1 Set max state and enable channel	64
	10.3	3.2 "Set" state	65
	10.3	3.3 "Capture" state	66
	10.3	3.4 Usage cases	67
	1	LO.3.4.1 Case 1: 1-channel sampling for Misc	67
	1	LO.3.4.2 Case 2: RSSI capture	67
	1	10.3.4.3 Case 3 with detailed register setting	68
	10.4	Register table	69
13	L PGA	4	72
	11.1	Power on/down	73
	11.2	Select input channel	73
	11.3	Adjust gain	73
	11.4	Enable/Disable PGA output	73
	11.5	Load digital register 0x3c	73
	11.6	Register table	74
12	2 AES		75
	12.1	RISC mode	75
	12.2	AES-CCM	75

	12.3	Register table	76
13	8 Key	Electrical Specifications	77
	13.1	Absolute maximum ratings	77
	13.2	Recommended operating condition	77
	13.3	Electrical characteristics	78
	13.4	General characteristics	78
	13.5	Inputs/Outputs characteristics	78
	13.6	Pull-up/Pull-down resistor	79
	13.7	SPI characteristics	80
	13.8	I2C characteristics	81
	13.9	RF performance	82
	13.10	Crystal characteristics	84
	13.11	RC oscillator characteristics	84
	13.12	ADC characteristics	84
	13.13	ESD characteristics	85
	13.14	Storage condition	85
14	l App	olication	87
	14.1	Application example for ST17H56	87
	14.3	1.1 Schematic	87
	14.1	1.2 BOM (Bill of Material)	87

1 Overview

The ST17H56 is -developed BLE SoC solution, which is Bluetooth 4.2 fully standard compliant to allow easy connectivity with Bluetooth Smart Ready mobile phones, tablets, laptops. It supports BLE slave and master mode operations. It also supports BLE 5.0 2Mbps mode and long packet length.

1.1 Block diagram

The ST17H56 integrates a power-balanced 32-bit proprietary MCU, a high-performance BLE/2.4GHz Radio, 8kB SRAM, 16kB OTP, a general-purpose ADC, a quadrature decoder (QDEC), 4-channel PWM, flexible I/O interfaces and other peripheral blocks required for Bluetooth Low Energy application development.

The system's block diagram is as shown in Figure 1-1:

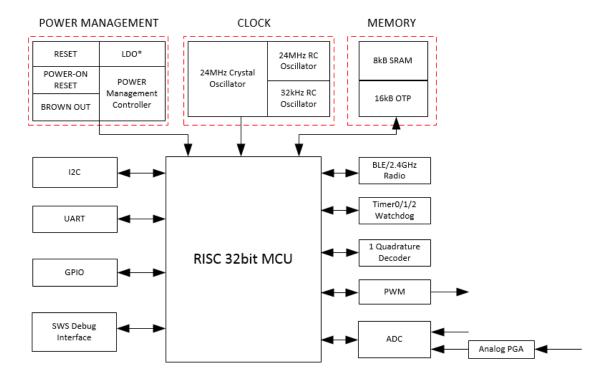


Figure 1-1 Block diagram of the system

^{*}Note: The internal LDO regulators serve to supply power for 1.8V digital core and analog modules in Active/Idle/Suspend mode.

1.2 Key features

1.2.1 General features

General features are as follows:

- 1) 32-bit proprietary microcontroller
 - ♦ Better power-balanced performance than ARM MO
 - ♦ Instruction cache controller with 2kB cache RAM memory
 - ♦ Maximum running speed up to 48MHz
- 2) Memory architecture
 - ♦ 16kB OTP
 - ♦ 8kB SRAM
- 3) Supports BLE and 2.4GHz proprietary protocols
- 4) RTC and other timers
 - Clock source of 24MHz/32kHz RC oscillator, 24MHz crystal oscillator
 - ♦ Three general 32-bit timers, with four selectable modes in active mode
 - ♦ Watchdog timer
 - ♦ A low-frequency 32kHz timer available in low power mode
- 5) Digital and analog interfaces
 - ♦ Up to 9 GPIOs
 - ♦ Configurable pull-up or pull-down resistors
 - ♦ I2C Master/Slave
 - ♦ UART interface
 - ♦ SWS (Single Wire Slave) interface for debugging
 - ♦ One quadrature decoder (QDEC)
 - ♦ Up to 4-channel PWM output
 - ♦ Up to 5-channel (only GPIO input) ADC with 10.5 ENOB
 - ♦ 2-channel differential PGA.
- 6) Hardware AES and random number generator
- 7) Firmware encryption: support software signature based on OTP
- 8) Operating temperature range: -40° C ~+85 $^{\circ}$ C
- 9) Package:
 - ♦ 16-pin TSSOP16_4.96X6.4 mm, ST17H56
 - ♦ Completely RoHS-compliant

1.2.2 RF Features

RF features include:

- 1) BLE/2.4GHz RF transceiver in worldwide 2.4GHz ISM band
- 2) Bluetooth 4.2 Compliant and BLE 5.0 2Mbps and long packet length
- 3) 2.4GHz proprietary 2Mbps/1Mbps/500kbps/250kbps mode with Adaptive Frequency Hopping support
- 4) Rx Sensitivity: -90dBm @ BLE 1Mbps mode, -86.5dBm @ BLE 2Mbps mode
- 5) Tx Output power: +7dBm
- 6) 50Ω matched single-pin antenna input
- 7) RSSI monitoring with +/-4dB accuracy

1.2.3 Features of power management module

Features of power management module include:

- 1) Power supply: 1.9V~3.6V
- 2) Battery monitor for low battery voltage detection
- 3) Brownout detection/shutoff and Power-On-Reset
- 4) Multiple-power-state to optimize power consumption
- 5) Low power consumption
 - Transmitter mode current: 14.5mA @ 0dBm power, 25mA @ 7dBm power
 - Receiver mode current: 13.6mA
 - Suspend mode current:
 - ♦ IO wakeup: 6.8uA
 - ♦ 32kHz RC wakeup: 8uA
 - Deep sleep mode current:

1.3 Typical application

The ST17H56 can be applied to a variety of Bluetooth Low Energy applications. Typical applications include, but are not limited to:

- HID (Human Interface Devices)
- Gamepad

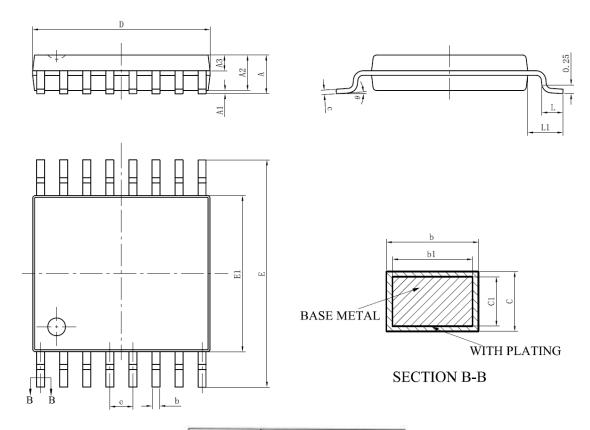

1.4 Ordering information

Table 1-1ST17H56 ordering information

Product Series	Package Type	Temperature Range	Ordering No.	Packing Method	Minimum Order Quantity
ST17H56	16-pin TSSOP16_4.96 X6.4 mm	-40℃ ~+85℃	ST17H56	Tube	9600

1.5 Package

Package dimensions for the ST17H56 are shown as below.

	1.00BSC			
0.45	0.60	0.75		
(0.65BSC			
4.30	4.40	4.50		
6.20	6.40	6.60		
4.86	4.96	5.06		
0.12	0.13	0.14		
0.13	_	0.18		
0.19	0.22	0.25		
0.20	_	0.29		
0.39	0.44	0.49		
0.90	1.00	1.05		
0.05	_	0.15		
_	_	1.20		
MIN	NOM	MAX		
	MIN - 0.05 0.90 0.39 0.20 0.19 0.13 0.12 4.86 6.20 4.30			

Figure 1-2 Package dimension for ST17H56 (Unit: mm)

1.6 Pin layout

1.6.1 Pin layout for ST17H56

The figure below shows pin assignment for the ST17H56.

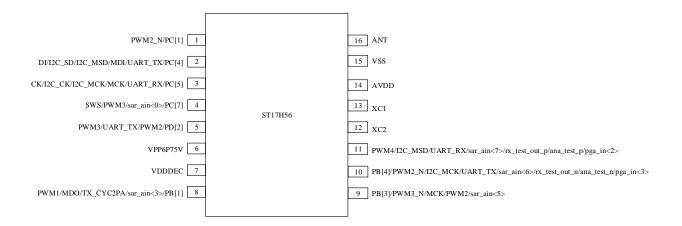


Figure 1-3 Pin assignment for ST17H56

Functions of 16 pins for the ST17H56 are described in the table below:

Table 1-2Pin functions for ST17H56

No.	Pin Name	Туре	Description
1	PWM2_N/PC[1]	Digital I/O	PWM2 inverting output /GPIO PC[1]
2	DI/I2C_SD/I2C_MSD/MDI/UART_TX/PC[4]	Digital I/O	SPI Slave data input / I2C Slave serial data / I2C Master serial data / SPI Master data input / UART_TX / GPIO PC[4]
3	CK/I2C_CK/I2C_MCK/MCK/UART_RX/PC[5]	Digital I/O	SPI Slave clock / I2C Slave clock / I2C Master clock / SPI Master clock / UART_RX / GPIO PC[5]
4	SWS/PWM3/sar_ain<0>/PC[7]	Digital I/O	Single wire slave / PWM3 output / SAR ADC input / GPIO PC[7]
5	PWM3/UART_TX/PWM2/PD[2]	Digital I/O	PWM3 output / UART_TX / PWM2 output / GPIO PD[2]
6	VPP6P75V	PWR	6.75V supply for OTP programming
7	VDDDEC	PWR	Digital LDO output
8	PWM1/MDO/TX_CYC2PA/sar_ain<3>/PB[1]	Digital I/O	PWM1 output/MDO/ MDO/TX_CYC2PA/SAR ADC input/ GPIO PB[1]
9	PWM3_N/MCK/PWM2/sar_ain<5>/PB[3]	Digital I/O	PWM3 inverting output/MCK/PWM2 output/SAR ADC input/GPIO PB[3]
10	PWM2_N/I2C_MCK/UART_TX/sar_ain<6>/r x_test_out_n/ana_test_n/pga_in<3>/PB[4]	Digital I/O	PWM2 inverting output / I2C Master clock / UART_TX / SAR ADC input / PGA input / GPIO PB[4]
11	PWM4/I2C_MSD/UART_RX/sar_ain<7>/rx_t est_out_p/ana_test_p/pga_in<2>/PB[5]	Digital I/O	PWM4 output / I2C Master serial data / UART_RX / SAR ADC input / PGA input / GPIO PB[5]
12	XC2	Analog	24MHz crystal input

No.	Pin Name	Туре	Description
13	XC1	Analog	24MHz crystal input
14	AVDD	PWR	3V output
15	VSS	GND	ground for the whole chip
16	ANT	Analog I/O	RF antenna

1.6.2 Notes

- 1) All digital IOs including PB[1], PB[3], PB[4], PB[5], PC[1], PC[4], PC[5], PC[7], and PD[2] can be used as GPIOs and have configurable pull-up/pull-down resistor.
- 2) I2C Master/Slave pins can be configured independently.
 - ♦ Pins marked with I2C_MCK and I2C_MSD can be configured as I2C Master clock and serial data.
 - ♦ Pins marked with I2C_CK and I2C_SD can be configured as I2C Slave clock and serial data.
- 3) UART: UART_TX, UART_RX.
- 4) ADC input: PC[7], PB[4], PB[5]. Please refer to section 10 SAR ADC.
- 5) Analog PGA input: PB[4], PB[5]. Please refer to section 11 PGA.
- 6) Pin drive strength: All GPIOs support drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0). Please refer to section **7.1.1** Basic configuration for the corresponding "DS" register address and the default setting.

2 Memory and MCU

2.1 Memory

The ST17H56 embeds 8kB SRAM and 16kB OTP.

2.1.1 SRAM/Register

SRAM/Register memory map is shown as follows:

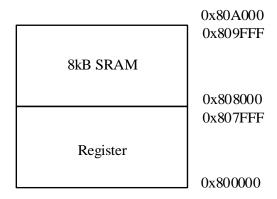


Figure 2-1 Physical memory map

Register address: 0x800000 ~ 0x807FFF; 8kB SRAM address: 0x808000 ~ 0x809FFF.

Both register and 8kB SRAM address can be accessed (read or write) via debugging interface (I2C, SWS interface).

2.1.2 OTP

OTP address mapping is configurable.

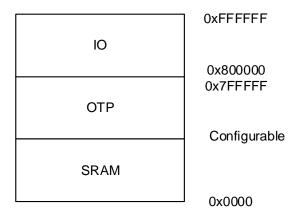


Figure 2-2 MCU memory map

2.2 Firmware encryption

The ST17H56 supports Bootloader-based firmware encryption/decryption.

The firmware can be encrypted using a customer-provided security key. The customer security key is written into a specified location within the internal OTP (i.e. the last 4-bytes of the OTP), and becomes unreadable. Any attempt to read the key will only result in either all 1's or all 0's.

The encrypted firmware can be generated based on the plaintext firmware and the customer security key. The customer can burn the security key into the obscured memory area and also the encrypted firmware into the OTP.

The firmware is readable by all, but appears as garbled binaries to 3rd party.

2.3 MCU

The ST17H56 integrates a powerful 32-bit MCU. The digital core is based on 32-bit RISC, and the length of instructions is 16 bits; four hardware breakpoints are supported.

2.4 Working modes

The ST17H56 has four working modes: Active, Idle, Suspend and Deep Sleep. This section mainly gives the description of every working mode and mode transition.

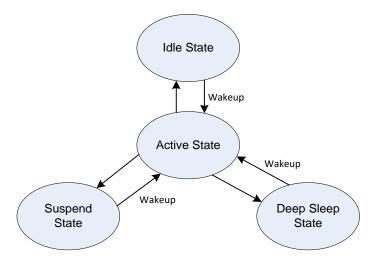


Figure 2-3 Transition chart of working modes

2.4.1 Active mode

In active mode, the MCU block is at working state, and the ST17H56 can transmit or receive data via its embedded RF transceiver. The RF transceiver can also be powered down if no data transfer is needed.

2.4.2 Idle mode

In Idle mode, the MCU block stalls, and the RF transceiver can be at working state or be powered down. The time needed for the transition from Idle mode to Active mode is negligible.

2.4.3 Power-saving mode

For the ST17H56, there are two kinds of power-saving modes: suspend mode and deep sleep mode. The two modes have similar transition sequences but different register settings. For 1.8V digital core, it's still provided with the working power by 1.8V LDO in suspend mode; while in deep sleep mode, the 1.8V LDO will be turned off, and the digital core is powered down.

In suspend mode, the RF transceiver is powered down, and the clock of the MCU block is stopped.

While in deep sleep mode, both the RF transceiver and the MCU block are powered down with only power management block being active.

Deep sleep mode includes two sub-modes, including deep sleep with SRAM retention and deep sleep without SRAM retention.

Deep Sleep Sub-Mode Characteristic	Deep sleep with SRAM retention	Deep sleep without SRAM retention
Wakeup time to Active mode	Shorter than deep sleep without retention, almost same as Suspend	1ms
8kB retention SRAM (with retention in deep sleep)	full	off

Table 2- 1Deep sleep sub modes

*Note:

- "full": Full speed. In Active, Idle and Suspend mode, the 8kB retention SRAM is powered on and work normally (can be accessed); in Deep sleep with SRAM retention, the retention SRAM is powered on, however, the contents of the retention SRAMs can be retained and cannot be accessed.
- 2) "off": The retention SRAM is powered down in Deep sleep without SRAM retention.

 T_{SP2A} : the transition time needed for the ST17H56 to enter the active mode from suspend mode.

T_{DS2A}: the transition time needed from deep sleep mode to active mode.

For the tested values of the " T_{SP2A} " and " T_{DS2A} ", please refer to section General characteristics.

Table 2- 2 Retention analog registers in deep sleep

Address	R/W	Description	Default value
afe_0x34	R/W	buffer, watchdog reset/software reset clean	0x00
afe_0x35	R/W	buffer, watchdog reset/software reset clean	0x00
afe_0x36	R/W	buffer, watchdog reset/software reset clean	0x00
afe_0x37	R/W	buffer, watchdog reset/software reset clean	0x00
afe_0x38	R/W	buffer, watchdog reset/software reset clean	0x00
afe_0x39	R/W	buffer, watchdog reset/software reset clean	0xff
afe_0x3a	R/W	buffer, only power on reset clean	0x00
afe_0x3b	R/W	buffer, only power on reset clean	0x00
afe_0x3c	R/W	buffer, only power on reset clean	0x00
afe_0x3d	R/W	buffer, only power on reset clean	0x00
afe_0x3e	R/W	buffer, only power on reset clean	0x00
afe_0x3f	R/W	buffer, only power on reset clean	0x7f

Analog registers (afe_0x34 \sim afe_0x3f) as shown above are retained in deep sleep mode and can be used to store program state information across deep sleep cycles.

- ♦ Analog registers afe_0x3a~ afe_0x3f are non-volatile even when chip enters deep sleep or chip is reset by watchdog or software, i.e. the contents of these registers won't be changed by deep sleep or watchdog reset or chip software reset.
- ♦ Analog registers afe_0x34~ afe_0x39 are non-volatile in deep sleep, but will be cleared by watchdog reset or chip software reset.
- ♦ After POR (Power-On-Reset), all registers will be cleared to their default values, including these analog registers.

User can set flag in these analog registers correspondingly, so as to check the booting source by reading the flag.

For chip software reset, please refer to **section 2.5 Reset**.

2.5 Reset

The chip supports three types of reset methods, including POR (Power-On-Reset), watchdog reset and software reset.

- 1) POR: After power on, the whole chip will be reset, and all registers will be cleared to their default values.
- 2) Watchdog reset: A programmable watchdog is supported to monitor the system. If watchdog reset is triggered, registers except for retention analog registers afe_0x3a~ afe_0x3f will be cleared.
- 3) Software reset: It is also feasible to carry out software reset for the whole chip or some modules.
 - Setting address 0x6f[5] to 1b'1 is to reset the whole chip. Similar to watchdog reset (see section 2.4.3 Power-saving mode), retention analog registers afe_0x3a~ afe_0x3f are non-volatile, while other registers including afe_0x34~ afe_0x39 will be cleared by chip software reset.
 - ♦ Addresses 0x60~0x62 serve to reset individual modules: if some bit is set to logic "1", the corresponding module is reset.

Table 2- 3 Register configuration for software reset

Address	Mnemonic	Туре	Description	Reset Value
			Reset control, 1 for reset, 0 for clear	
			[0]: SPI	
			[1]: I2C	
			[2]: n/a	
0x60	RST0	R/W	[3]: n/a	0xc0
			[4]: MCU	
			[5]: n/a	
			[6]: AIF	
			[7]: ZB	
	51 RST1 R/V		[0]: system_timer	
		T1 R/W	[1]: algm	
			[2]: dma	
0x61			[3]: rs232	0x3f
0.01	1/311	11,7 00	[4]: pwm	0.51
			[5]: aes	
			[6]: n/a	
			[7]: swires	
			[0]: n/a	
			[1]: n/a	
0x62	RST2	R/W	[2]: n/a	0x88
0,02	11312	11,700	[3]: adc	0,00
			[4]: mcic	
			[5]: soft reset to reset mcic enable	

Address	Mnemonic	Туре	Description	Reset Value
			[6]: rsvd (mspi)	
			[7]: alg	
			[0]: suspend enable	
0x6f			[5]: rst all (act as watchdog reset)	
	PWDNFN	W	[6]: rsvd (mcu low power mode)	0x00
	PWDINEIN		[7]: stall mcu trig If bit[0] set 1, then	0x00
			system will go to suspend. Or only	
			stall mcu.	

2.6 Power Management

The multiple-stage Power Management (PM) module is flexible to control power state of the whole chip or individual functional blocks such as MCU, RF Transceiver, and peripherals.

2.6.1 Digital LDO

The chip embeds LDO regulators to generate 1.8V regulated voltage. The internal LDO regulators serve to supply power for 1.8V digital core and analog modules in Active/Idle/Suspend mode.

While in deep sleep mode, the embedded 1.8V LDO regulators will be turned off.

2.6.2 VBUS LDO

The embedded VBUS LDO generates 3.0V voltage to supply power for the whole chip. The VBUS LDO supports two working modes, including LDO mode and Bypass mode.

- ♦ When the input voltage VBAT is 3.3V~4.3V, the VBUS LDO works in LDO mode.
- ♦ When the input voltage VBAT is lower than 3.3V, the VBUS LDO works in Bypass mode, and its output voltage is the same as VBAT input voltage.

2.6.3 Power-On-Reset (POR) and Brown-out detect

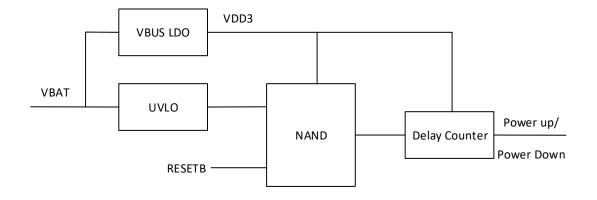
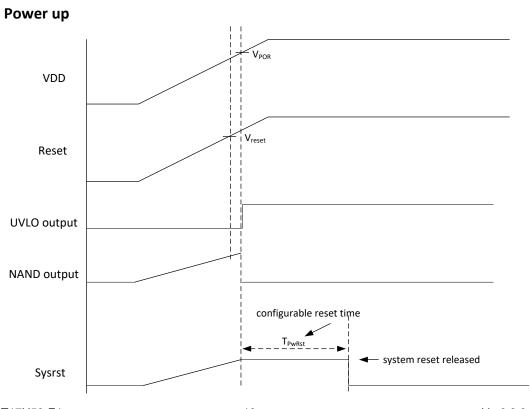


Figure 2- 4 Block diagram for power up/down

The whole chip power up and down is controlled by the UVLO (Ultra-low Voltage Lockout) module and the external RESETB pin via the logic shown in the above diagram. UVLO takes the external power supply as input and releases the lock only when the power supply voltage is higher than a preset threshold. The RESETB pin has an internal pull-up resistor; an external Cap can be connected on the RESETB pin to control the POR delay.

After both UVLO and RESETB release, there is further configurable **delay** before the system reset signal ("**Sysrst**") is released. This delay is adjusted by analog register afe_0x20. Since the content of afe_0x20 is reset to default only after power cycle, watchdog reset, or software reset, the delay change using afe_0x20 is only applicable when the chip has not gone through these reset conditions. For example, after deep sleep wakeup, the setting in afe_0x20 will take effect.


Address Description Default

r_dly:
[6:0]: delay, 32kHz decrease counter. Default delay 1ms.
[7] rsvd

Oxe0

Table 2- 4Analog register to control delay counter

^{*}Note: The register afe_0x20 will be reset to default after power cycle (POR), watchdog reset, or software reset.

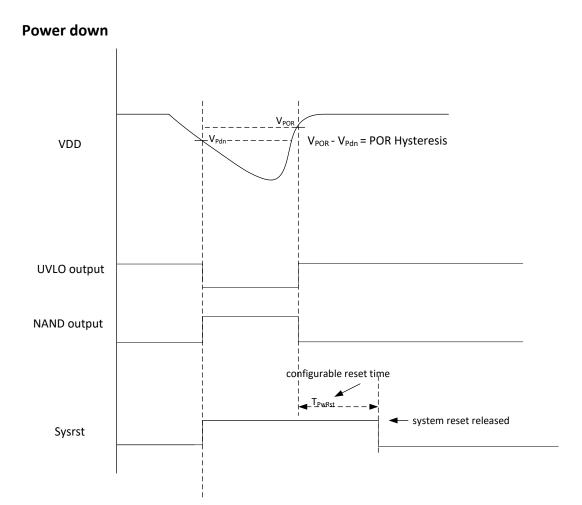


Figure 2- 6 Power-down sequence

The power up and power down sequence is shown in Table 13- 4, with the following parameters:

 \diamondsuit V_{POR}: VDD voltage when V_{UVLO} turns to high level

♦ V_{Pdn}: VDD voltage when V_{UVLO} turns to low level

♦ T_{PwRst}: Delay counter value (Configurable via analog register afe_0x20)

2.6.4 Working mode switch

The chip can switch to idle mode to stall the MCU.

To minimize power consumption, the chip can switch to power saving mode (suspend or deep sleep) correspondingly. In this case, the low-power 32kHz RC oscillator can still be running, and the low frequency wakeup timer LTIMER can be programmed to stay alive. The device can be activated to working state via external pin trigger or internal wakeup timer.

User can directly invoke corresponding library function to switch working mode of the chip.

If certain module doesn't need to work, user can power down this module in order to save power.

Table 2-5 Analog registers for module power up/down control

Address	Local name	Default Value	Description
afe_0x05<0>	32K_rc_pd	0	Power down 32kHz RC oscillator 1: Power down 0: Power up
afe_0x05<2>	24M_rc_pd	0	Power down of 24MHz RC oscillator 1: Power down 0: Power up
afe_0x05<3>	xtal_LDO_pd	0	Power down of 24MHz crystal oscillator 1: Power down 0: Power up
afe_0x05<4>	ldo_ana_pd	0	Power down of analog LDO 1: Power down 0: Power up
afe_0x06<1>	rx_lnaLDO_pd	1	Power down LNA LDO in RF transceiver 1: Power down 0: Power up
afe_0x06<2>	rx_anaLDO_pd	1	Power down analog LDO in RF transceiver 1: Power down 0: Power up
afe_0x06<3>	rx_rfLDO_pd	1	Power down RF LDO in RF transceiver 1: Power down 0: Power up
afe_0x06<6>	pll_vco_ldo_pd	1	Power down VCO LDO 1: Power down 0: Power up

2.7 Wakeup sources

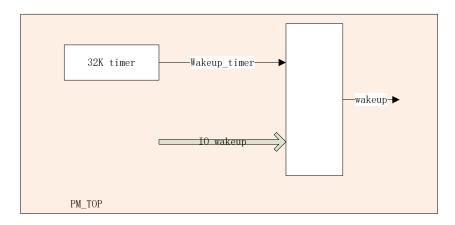


Figure 2-7 Wakeup sources

2.7.1 Wakeup source – 32kHz timer

This wakeup source is able to wake up the system from suspend mode or deep sleep mode. Address afe_0x26 bit[6] is the enabling bit for wakeup source from 32kHz timer.

2.7.2 Wakeup source – IO

This wakeup source is able to wake up the system from suspend mode or deep sleep mode. And IO wakeup supports high level or low level wakeup which is configurable via wakeup polarity control registers. Total wakeup pin can be up to 11.

Address afe_0x26[4] should be set as 1b'1 to enable IO wakeup source.

Enabling control registers: PB[7:0] enabling control register is afe_0x28[7:0].

Polarity control registers: PB[7:0] polarity control register is afe_0x22[7:0].

The corresponding driver is available so that user can directly invoke it to use IO wakeup source.

2.7.3 Register table

Table 2- 6 Analog registers for Wakeup

Address	R/W	Description	Default Value
		pa_polarity:	
afe_0x21	R/W	[7:5]: rsvd (select polarity for PA[7]~PA[5] IO (pad) wakeup	0x00
		0: high level, 1: low level)	
		pb_polarity:	
		[7:0]: select polarity for PB[7]~PB[0] IO (pad) wakeup	
afe_0x22	R/W	[5:3]: PB[5]~PB[3]	0x00
		[1]: PB[1]	
		0: high level, 1: low level	
afe_0x26[3]	R/W	Enable/Mask filter for IO (Pad) wakeup	0x00

Address	R/W	Description	Default Value
		1: Select 16us filter to filter out jitter on IO PAD input.	
		0: IO Pad combinational logic output (disable filter)	
afe_0x26[4]	R/W	1: Enable IO (pad) wakeup	
afe_0x26[5]	R/W	Rsvd (Enable digital core wakeup)	
afe_0x26[6]	R/W	1: Enable 32kHz timer wakeup	
		pad_wkup_pa_en:	
afe_0x27	R/W	[7:5]: rsvd (enable/disable PA[7]~PA[5] IO (pad) wakeup	0x00
		1: enable; 0: disable)	
		pad_wkup_pb_en:	
		[7:0]: enable/disable PB[7]~PB[0] IO (pad) wakeup	
afe_0x28	R/W	[5:3]: PB[5]~PB[3]	0x00
		[1]: PB[1]	
		1: enable; 0: disable	
		State flag bits	
		[1]: pm_irq, i.e. 32kHz timer wakeup status	
	0x44 W1C	[2]: rsvd (digital core wakeup status)	
afe_0x44		[3] wkup_pad, i.e. IO (pad) wakeup status.	0x00
		Write 1 to clean.	
		e.g. If bit[3] is 1, it indicates the system is waked up by IO	
		(pad) source.	

Table 2-7 Digital register for Wakeup

Address	Mnemonic	Туре	Description	Reset Value
0x6e	WAKEUPEN	R/W	Wakeup enable [0]: rsvd (enable wakeup from I2C host) [1]: rsvd (enable wakeup from SPI host) [2]: rsvd [3]: enable wakeup from gpio [4]: rsvd (enable wakeup from QDEC synchronous interface) System resume control [7]: sleep wakeup reset system enable	1f

3 BLE/2.4G RF Transceiver

3.1 Block diagram

The ST17H56 integrates an advanced BLE/2.4GHz RF transceiver. The RF transceiver works in the worldwide 2.4GHz ISM (Industrial Scientific Medical) band and contains an integrated Balun with a single-ended RF Tx/Rx port pin. No matching components are needed.

The transceiver consists of a fully integrated frequency synthesizer, a power amplifier, a modulator and a receiver. The transceiver can be configured to work in Bluetooth 4.2 standard-compliant 1Mbps BLE mode, BLE 5.0 2Mbps mode, and 2.4GHz proprietary 2Mbps/1Mbps/500kbps/250kbps mode. All modes support FSK/GFSK/MSK modulations.

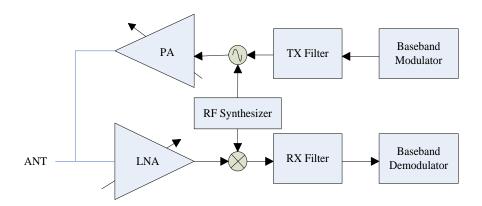


Figure 3-1 Block diagram of RF transceiver

The internal PA can deliver a maximum 7dBm output power without the needs for an external RF PA. If higher output power is needed, then an external RF Frontend can be added to boost the output power.

3.2 Function description

3.2.1 Air interface data rate and RF channel frequency

Air interface data rate, the modulated signaling rate for RF transceiver when transmitting and receiving data, is configurable via related register setting: 250kbps, 500kbps, 1Mbps, 2Mbps.

For the ST17H56, RF transceiver can operate with frequency ranging from 2.400GHz to 2.4835GHz. The RF channel frequency setting determines the center of the channel.

3.3 Baseband

The baseband is disabled by default. The corresponding API is available for user to power on/down the baseband and enable/disable clock, so that the baseband can be turned on/off flexibly.

The baseband contains dedicated hardware logic to perform fast AGC control, access code correlation, CRC checking, data whitening, encryption/decryption and frequency hopping logic.

The baseband supports all features required by Bluetooth V4.2 specification. It also supports BLE 5.0 2Mbps mode and long packet length.

3.3.1 **Packet format**

Packet format in standard 1Mbps BLE mode is shown as Table 3-1:

Table 3-1 Packet Format in standard 1Mbps BLE mode

LSB			MSB
Preamble	Access Address	PDU	CRC
(1 octet)	(4 octets)	(2 ~ 257 octets)	(3 octets)

Packet length 80bit ~ 2120bit (80~2120us @ 1Mbps).

Packet format in standard 2Mbps BLE mode is shown as Table 3-2:

Table 3- 2 Packet format in standard 2Mbps BLE mode

LSB			MSB
Preamble	Access Address	PDU	CRC
(2 octets)	(4 octets)	(2 ~ 257 octets)	(3 octets)

Packet format in 2.4GHz Proprietary mode is shown as Table 3-3:

Table 3-3 Packet format in Proprietary mode

LSB			MSB
Preamble	Address code	Packet Controller + Payload	CRC
(8 bits)	(configurable 3~5 bytes)	(1~63 bytes)	(1~2 bytes)

3.3.3 **RSSI** and frequency offset

The ST17H56 provides accurate RSSI (Receiver Signal Strength Indicator) and frequency offset indication.

- 1Byte RSSI can be read upon receiving the data packet.
- If no data packet is received (e.g. to perform channel energy measurement when no desired signal is present), real-time RSSI can also be read from specific registers which will be updated automatically.
- RSSI resolution can reach +/-4dB.
- 2-Byte Frequency offset value can be read upon receiving the data packet. Valid bits of actual frequency offset may be less than 16bits, and different valid bits correspond to different tolerance range.

supplies corresponding drivers for user to read RSSI and frequency offset as needed.

4 Clock

4.1 Clock sources

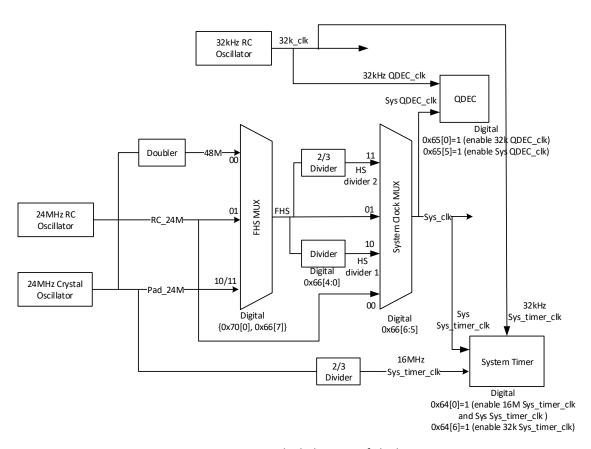


Figure 4-1 Block diagram of clock

The ST17H56 clock supports 24MHz external crystal or 24MHz/32kHz embedded RC oscillator.

- ♦ A RC_24M clock is available from an embedded 24MHz RC oscillator. It can be directly used as clock source for system, and it's also a selectable source for high speed clock (FHS). When system clock is configured as 24MHz RC (default), the RC_24M clock can be output to PA[7] by configuring the digital registers as below: 0x586=0x7f, 0x5a9=0x40.
- ♦ A RC_32k clock is available from an embedded 32kHz RC oscillator. It can provide a 32kHz clock source for 32kHz timer during sleep state as well as System Timer and QDEC module. When 32kHz clock is configured as 32kHz RC (default), the RC_32k clock can be output to PA[1] by configuring the digital registers as below: 0x586=0xfd, 0x5a8=0x08.
- ♦ A Pad_24M clock is available from external 24MHz crystal via pin XC1 and XC2. It can provide 16MHz clock source for System Timer via a 2/3 frequency divider. The Pad_24M can be directly used as clock source for high speed clock (FHS), or generate a 48MHz clock source via a frequency doubler for FHS.
- → High speed clock (FHS) can be directly used as clock source for system, or generate HS divider clock 1 or 2 source via a configurable or fixed 2/3 frequency divider for system.

4.2 System clock

There are four selectable clock sources for MCU system clock: **RC_24M** (derived from 24MHz RC oscillator), High speed clock "**FHS**", **HS divider clock 1** (derived from "FHS" via a configurable frequency divider), **HS divider clock 2** (derived from "FHS" via a fixed 2/3 frequency divider).

The high speed clock (FHS) is selectable via address {0x70[0], 0x66[7]} from the following sources: **48MHz** clock (derived from 24MHz crystal oscillator via a frequency doubler), **RC_24M** (derived from 24MHz RC oscillator), and **Pad_24M** (derived from 24MHz crystal oscillator).

The digital register CLKSEL (address 0x66) serves to set system clock: System clock source is selectable via bit[6:5].

- ♦ If address 0x66[6:5] is set to 2b'00 to select the RC_24M, system clock frequency equals 24MHz.
- ♦ If address 0x66[6:5] is set to 2b'01 to select the FHS clock, system clock frequency equals the FHS frequency (F_{FHS}).
- ♦ If address 0x66[6:5] is set to 2b'10 to select the HS divider clock 1, system clock frequency is adjustable via address 0x66[4:0]. The formula is shown as below:
 - $F_{System clock} = F_{FHS} / (system clock divider value in address 0x66[4:0]).$
- ♦ If address 0x66[6:5] is set to 2b'11 to select the HS divider clock 2, system clock frequency equals F_{FHS} * 2/3.

4.3 Module clock

Registers CLKEN0~CLKEN2 (address 0x63~0x65) are used to enable or disable clock for various modules. By disable the clocks of unused modules, current consumption could be reduced.

4.3.1 System Timer clock

System Timer simultaneously uses system clock, a 16MHz clock, as well as a 32kHz clock.

- ♦ The 16MHz clock is derived from 24MHz crystal oscillator via a 2/3 frequency divider.
- ♦ The 32kHz clock is RC_32k.
- → Digital register 0x64 bit[0] and bit[6] should be enabled to drive the System Timer by the 16MHz clock, system clock, as well as the 32kHz clock.

4.3.2 QDEC clock

QDEC module simultaneously uses system clock as well as a 32kHz clock.

- ♦ The 32kHz clock is RC_32k.
- ♦ Digital register 0x65 bit[0] and bit[5] should be enabled to drive the whole QDEC module by the 32kHz clock and system clock.

4.4 Register table

Table 4- 1 Register table related to clock

Address	Mnemonic	R/W	Description	Default	
	Digital register				
0x63	CLKENO	R/W	Clock enable control: 1 for enable; 0 for disable [0]: SPI [1]: I2C [2]: HOSTIRQ [3]: n/a [4]: MCU [5]: FPU (Float Point Unit) [6]: AIF [7]: ZB		
0x64	CLKEN1	R/W	Clock enable control: 1 for enable; 0 for disable [0]: System timer (16M_clk and sys_clk for System timer) [1]: ALGM [2]: DMA [3]: RS232 [4]: PWM [5]: AES [6]: 32k_clk for system timer [7]: Swires	80	
0x65	CLKEN2	R/W	Clock enable control: 1 for enable; 0 for disable [0]: 32k_clk for QDEC [1]: 32k_clk for PWM [2:3]: n/a [4]: MCIC [5]: QDEC (sys_clk for QDEC) [6:7]: n/a	10	
0x66	CLKSEL	R/W	System clock select [4:0]: system clock divider. If 0x66[6:5] is set as 2b' 10, F _{Sysclk} = F _{FHS} / CLKSEL[4:0]. FHS: refer to 0x70 FHS_sel. [6:5]: select system clock source 2'b00: RC_24M from RC oscillator 2'b01: FHS clock (High speed clock) 2'b10: HS divider clock 1 derived from FHS clock via a configurable divider (see 0x66[4:0]) 2'b11: HS divider clock 2 derived from FHS clock via a fixed 2/3 divider {0x70[0], 0x66[7]}: FHS select	06	
0x70	FHS_sel	R/W	{0x70[0], 0x66[7]}: FHS select 2'b00: 48MHz clock doubled from 24MHz crystal oscillator 2'b01: RC_24M from RC oscillator 2'b1x: Pad_24M from 24MHz crystal oscillator	00	

5 Timers

5.1 Timer0~Timer2

The ST17H56 supports three general 32-bit timers in active mode, including Timer0~ Timer2. All of the three timers support four modes: Mode 0 (System Clock Mode), Mode 1 (GPIO Trigger Mode), Mode 2 (GPIO Pulse Width Mode) and Mode 3 (Tick Mode), which are selectable via the register TMR_CTRL0 (address 0x620) ~ TMR_CTRL1 (address 0x621).

Timer 2 can also be configured as "watchdog" timer to monitor firmware running.

5.1.1 Register table

Table 5-1 Register configuration for Timer0~Timer2

1able 5- 1 Register configuration for TimerU~Timer2				
Address	Mnemonic	Туре	Description	Reset Value
0x72	Wd_status	R/W	[0] watch dog status, write 1 to clear.	00
			[0]Timer0 enable	
			1: enable	
			[2:1] Timer0 mode.	
			0: using sclk, 1: using gpio,	
0x620	TMR_CTRL0	RW	2: count width of gpi, 3: tick	00
			[3]Timer1 enable	
			[5:4] Timer1 mode.	
			[6]Timer2 enable	
			[7]Bit of timer2 mode	
0x621	TMD CTDL1	RW	[0]Bit of timer2 mode	00
UXOZI	TMR_CTRL1	NVV	[7:1]Low bits of watch dog capture	00
			[6:0]High bits of watch dog capture.	
			Watch dog capture is compared with	
0x622	TMR_CTRL2	RW	[31:18] of timer2 ticker.	00
			[7]watch dog capture enable	
			1: enable	
			[0] timer0 status, write 1 to clear	
0x623	TMR_STATUS	RW	[1] timer1 status, write 1 to clear	00
			[2] timer2 status, write 1 to clear	
0x624	TMR_CAPT0_0	RW	Byte 0 of timer0 capture	00
0x625	TMR_CAPT0_1	RW	Byte 1 of timer0 capture	00
0x626	TMR_CAPT0_2	RW	Byte 2 of timer0 capture	00
0x627	TMR_CAPT0_3	RW	Byte 3 of timer0 capture	00
0x628	TMR_CAPT1_0	RW	Byte 0 of timer1 capture	00
0x629	TMR_CAPT1_1	RW	Byte 1 of timer1 capture	00
0x62a	TMR_CAPT1_2	RW	Byte 2 of timer1 capture	00
0x62b	TMR_CAPT1_3	RW	Byte 3 of timer1 capture	00
0x62c	TMR_CAPT2_0	RW	Byte 0 of timer2 capture	00
0x62d	TMR_CAPT2_1	RW	Byte 1 of timer2 capture	00
0x62e	TMR_CAPT2_2	RW	Byte 2 of timer2 capture	00
0x62f	TMR_CAPT2_3	RW	Byte 3 of timer2 capture	00
	_	•		

Address	Mnemonic	Туре	Description	Reset Value
0x630	TMR_TICKO_0	RW	Byte 0 of timer0 ticker	00
0x631	TMR_TICK0_1	RW	Byte 1 of timer0 ticker	00
0x632	TMR_TICK0_2	RW	Byte 2 of timer0 ticker	00
0x633	TMR_TICK0_3	RW	Byte 3 of timer0 ticker	00
0x634	TMR_TICK1_0	RW	Byte 0 of timer1 ticker	00
0x635	TMR_TICK1_1	RW	Byte 1 of timer1 ticker	00
0x636	TMR_TICK1_2	RW	Byte 2 of timer1 ticker	00
0x637	TMR_TICK1_3	RW	Byte 3 of timer1 ticker	00
0x638	TMR_TICK2_0	RW	Byte 0 of timer2 ticker	00
0x639	TMR_TICK2_1	RW	Byte 1 of timer2 ticker	00
0x63a	TMR_TICK2_2	RW	Byte 2 of timer2 ticker	00
0x63b	TMR_TICK2_3	RW	Byte 3 of timer2 ticker	00

5.1.2 Mode0 (System Clock Mode)

In Mode 0, system clock is used as clock source.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set as 0.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), Timer stops counting, Timer status is updated, and an interrupt is generated (if enabled).

Following is an example to show steps of setting TimerO as Mode O.

1st: Set initial Tick value of Timer0

Set initial Tick value of Timer0 via registers TMR_TICKO_0~TMR_TICKO_3 (address 0x630~0x633). Address 0x630 is lowest byte and 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer0

Set registers TMR_CAPTO_0~TMR_CAPTO_3 (address 0x624~0x627). Address 0x624 is lowest byte and 0x627 is highest byte.

3rd: Set Timer0 as Mode 0 and enable Timer0

Set register TMR_CTRL0 (address 0x620) [2:1] as 2b'00 to select Mode 0; Meanwhile set address 0x620[0] as 1b'1 to enable Timer0. Timer0 starts counting upward, and Tick value is increased by 1 on each positive edge of system clock until it reaches Timer0 Capture value.

5.1.3 Mode1 (GPIO Trigger Mode)

In Mode 1, GPIO is used as clock source. The "m0"/"m1"/"m2" register specifies the GPIO which generates counting signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick (i.e. counting value) is increased by 1 on each positive/negative (configurable) edge of GPIO from preset initial Tick value. Generally the initial Tick value is set as 0. The "**Polarity**" register specifies the GPIO edge when Timer Tick counting increases.

Note: Refer to Section 7.1.2 for corresponding "m0", "m1", "m2" and "Polarity" register address.

Once current Timer Tick value matches the preset Timer Capture (i.e. timing value), timer stops counting and an interrupt is generated (if enabled).

Following is an example to show steps of setting Timer1 as Mode 1.

1st: Set initial Tick value of Timer1

Set initial Tick value of Timer1 via registers TMR_TICK1_0~TMR_TICK1_3 (address 0x634~0x637). Address 0x634 is lowest byte and 0x637 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Capture value of Timer1

Set registers TMR_CAPT1_0~TMR_CAPT1_3 (address 0x628~0x62b). Address 0x628 is lowest byte and 0x62b is highest byte.

3rd: Select GPIO source and edge for Timer1

Select certain GPIO to be the clock source via setting "m1" register.

Select positive edge or negative edge of GPIO input to trigger Timer1 Tick increment via setting "Polarity" register.

4th: Set Timer1 as Mode 1 and enable Timer1

Set address 0x620[5:4] as 2b'01 to select Mode 1; Meanwhile set address 0x620[3] as 1b'1 to enable Timer1. Timer1 starts counting upward, and Timer1 Tick value is increased by 1 on each positive/negative (specified during the 3rd step) edge of the specified GPIO input until it reaches Timer1 Capture value.

5.1.4 Mode2 (GPIO Pulse Width Mode)

In Mode 2, system clock is used as the unit to measure the width of GPIO pulse. The "m0"/"m1"/"m2" register specifies the GPIO which generates control signal for Timer0/Timer1/Timer2.

After Timer is enabled, Timer Tick is triggered by a positive/negative (configurable) edge of GPIO pulse. Then Timer Tick (i.e. counting value) is increased by 1 on each positive edge of system clock from preset initial Tick value. Generally the initial Tick value is set as 0. The "Polarity" register specifies the GPIO edge when Timer Tick starts counting.

Note: Refer to Section 7.1.2 for corresponding "m0", "m1", "m2" and "Polarity" register address.

While a negative/positive edge of GPIO pulse is detected, timer stops counting and an interrupt is generated (if enabled). The GPIO pulse width could be calculated in terms of tick count and period of system clock.

Following is an example to show steps of setting Timer2 as Mode 2.

1st: Set initial Timer2 Tick value

Set Initial value of Tick via registers TMR_TICK2_0~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Select GPIO source and edge for Timer2

Select certain GPIO source via setting "m2" register.

Select positive edge or negative edge of GPIO input to trigger Timer2 counting start via setting "Polarity" register.

3rd: Set Timer2 as Mode 2 and enable Timer2

Set address 0x620[7:6] to 2b'01 and address 0x621 [0] to 1b'1.

Timer2 Tick is triggered by a positive/negative (specified during the 2nd step) edge of the specified GPIO pulse. Timer2 starts counting upward and Timer2 Tick value is increased by 1 on each positive edge of system clock.

While a negative/positive edge of GPIO pulse is detected, Timer2 tick stops and an interrupt is generated (if enabled).

4th: Read current Timer2 Tick value to calculate GPIO pulse width

Read current Timer2 Tick value from address 0x638~0x63b.

Then GPIO pulse width is calculated as follows:

GPIO pulse width = System clock period * (current Timer2 Tick – intial Timer2 Tick)

For initial Timer2 Tick value is set to the recommended value of 0, then:

GPIO pulse width = System clock period * current Timer2 Tick.

5.1.5 Mode3 (Tick Mode)

In Mode 3, system clock is used as clock source.

After Timer is enabled, Timer Tick starts counting upward, and Timer Tick value is increased by 1 on each positive edge of system clock.

This mode could be used as time indicator. No interrupt will be generated. Timer Tick keeps rolling from 0 to 0xffffffff. When Timer tick overflows, it returns to 0 and starts counting upward again.

Following is an example to show steps of setting Timer0 as Mode 3.

1st: Set initial Tick value of Timer0

Set Initial value of Tick via address 0x630~0x633. Address 0x630 is lowest byte and address 0x633 is highest byte. It's recommended to clear initial Timer Tick value to 0.

2nd: Set Timer0 as Mode 3 and enable Timer0

Set address 0x620[2:1] as 2b'11 to select Mode 3, meanwhile set address 0x620[0] as 1b'1 to enable Timer0. Timer0 Tick starts to roll.

3rd: Read current Timer0 Tick value

Current Timer0 Tick value can be read from address 0x630~0x633.

5.1.6 Watchdog

Only Timer2 can be used as a watchdog timer, so that it could reset chip from unexpected hang up or malfunction.

Timer2 Tick has 32bits. Watchdog Capture has only 14bits, which consists of TMR_CTRL2 (address 0x622) [6:0] as higher bits and TMR_CTRL1 (address 0x621) [7:1] as lower bits. Chip will be reset when the Timer2 Tick[31:18] matches Watchdog Capture value.

The range of duration that can be set in watchdog is between T(sysclk)*2^18 and T(sysclk)*2^32, and T(sysclk) is the system clock period which is configurable. For example, if system clock is configured to 16MHz, then the upper time limit of watchdog reset is $2^32/16$ MHz ≈ 268 s.

Following shows steps of setting Timer2 as watchdog timer.

1st: Clear Timer2 Tick value

Clear registers TMR_TICK2_0 ~TMR_TICK2_3 (address 0x638~0x63b). Address 0x638 is lowest byte and 0x63b is highest byte.

2nd: Enable Timer2

Set register TMR CTRLO (address 0x620) [6] as 1b'1 to enable Timer2.

3rd: Set 14-bit Watchdog Capture value and enable Watchdog

Set higher 7 bits and lower 7 bits of Watchdog Capture via address 0x622[6:0] and 0x621[7:1]. Meanwhile set address 0x622[7] as 1b'1 to enable Watchdog.

Then Timer2 Tick starts counting upwards from 0.

If bits[31:18] of Timer2 Tick value read from address 0x638~0x63b reaches Watchdog Capture, the chip will be reset, and the status bit in address 0x72[0] will be set as 1b'1 automatically. User can read the watchdog status bit after chip reset to check if the reset source is watchdog, and needs to write 1b'1 to this bit to manually clear the flag.

5.2 32kHz LTIMER

The ST17H56 also supports a low frequency (32kHz) timer "LTIMER" in suspend mode or deep sleep mode. This 32kHz timer can be used as one kind of wakeup source.

32kHz LTIMER related functions are all handled in the stack.

5.3 System Timer

The ST17H56 also supports a System Timer. Please refer to section **4.3.1** for System Timer clock.

In suspend mode, both System Timer and Timer0~Timer2 stop counting, and 32kHz Timer starts counting. When the chip restores to active mode, Timer0~Timer2 will continue counting from the number when they stops; In contrast, System Timer will continue counting from an adjusted number which is a sum of the number when it stops and an offset calculated from the counting value of 32kHz Timer during suspend mode.

System timer related functions are all handled in the stack.

Manamania	D /\A/	Function
Table 5	5- 2 Re	gister table for System Timer

Address	Mnemonic	R/W	Function	Default Value
0x740	Sys_timer[7:0]	R/W		0x00
0x741	Sys_timer[15:8]	R/W		0x00
0x742	Sys_timer[23:16]	R/W		0x00

Address	Mnemonic	R/W	Function	Default Value
0x743	Sys_timer[31:24]	R/W	System timer counter, write to set initial value.	0x00
0x748	32K_cal_latch[7:0]	R	32k calibration count[7:0]	0x00
0x749	32K_cal_latch[15:8]	R	32k calibration count[15:8]	0x00
0x74a	Sys_timer_ctrl	R/W	[7]: enable of system timer [6]: irq_mask for system timer 1: enable, 0: disable [5:4]: calibration mode 2'b00: 4 cycles of 32kHz clock 2'b01: 8 cycles of 32kHz clock 2'b10: 16 cycles of 32kHz clock (Default setting) 2'b11: 32 cycles of 32kHz clock [3]: calibration enable [2]: set to 0 [1]: rsvd [0]: set 32kHz timer 1: write; 0: read	0x21
0x74b	Sys_timer_cmd	wo	[7:6]: rsvd[5]: clear 32k read latch update flag[4]: rsvd[3]: start 32k count write/read[2:0]: rsvd	0x00
0x74b	Sys_timer_status	RO	[7]: rsvd [6]: rd_busy_man_2d [5]: rd_update_man_2d [4]: rsvd [3]: ss_sync [2]: cmd_set_tgl [1:0]: rsvd	0x00
0x74c	sys_timer_32K_set [7:0]	R/W	32k timer write[7:0]	0x00
0x74d	sys_timer_32K_set [15:8]	R/W	32k timer write[15:8]	0x00
0x74e	sys_timer_32K_set [23:16]	R/W	32k timer write[23:16]	0x00
0x74f	sys_timer_32K_set [31:24]	R/W	32k timer write[31:24]	0x00
0x750	sys_timer_32K_read [7:0]	R	32k timer read[7:0]	0x00
0x751	sys_timer_32K_read [15:8]	R	32k timer read[15:8]	0x00

Address	Mnemonic	R/W	Function	Default Value
0x752	sys_timer_32K_read [23:16]	R	32k timer read[23:16]	0x00
0x753	sys_timer_32K_read [31:24]	R	32k timer read[31:24]	0x00

*Note:

32kHz clock calibration is related to 32k cycle numbers used. More cycles correspond to higher accuracy but more time. Generally 32kHz clock calibration will select 16 cycles of 32kHz clock.

The lower three bits of address 0x740 is invalid, therefore, the resolution should be 0.5us. The 0.5us resolution is only used for system timer read out. 32kHz clock calibration is done using every 16MHz clock cycle, so 32kHz clock accuracy is not affected.

1. Get 32kHz Timer count value

0x74a[0] = 0; //set to 32kHz Timer read mode

0x74a[3] = 1; //enable calibration to provide 16MHz clock count value related to 32kHz cycle (0x74a[5:4])

0x74a[7] = 1; //kick system timer to tick

0x74b[5] = 0; //clear 32kHz read update flag

Wait for 0x74b[5]==1; //wait for the next 32kHz update flag

Read 32kHz Timer value from 0x750

2. Set 32kHz Timer count value

0x74a[0] = 1; //set to 32kHz Timer write mode

Wait for 0x74b[6]==0; //see whether during 32kHz read

Write 32kHz Timer value to 0x74c;

0x74b[3] = 1; //start 32kHz write sync process

Wait for 0x74b[3] from 0 to 1; //wait 32kHz sync indicator from 16MHz to sys domain

Wait for 0x74b[3] from 1 to 0; //wait 32kHz sync indicator done

6 Interrupt System

6.1 Interrupt structure

The interrupting function is applied to manage dynamic program sequencing based on real-time events triggered by timers, pins and etc.

For the ST17H56, there are 24 interrupt sources in all: 16 types are level-triggered interrupt sources (listed in address 0x640~0x641) and 8 types are edge-triggered interrupt sources (listed in address 0x642).

When CPU receives an interrupt request (IRQ) from some interrupt source, it will determine whether to respond to the IRQ. If CPU decides to respond, it pauses current routine and starts to execute interrupt service subroutine. Program will jump to certain code address and execute IRQ commands. After finishing interrupt service subroutine, CPU returns to the breakpoint and continues to execute main function.

6.2 Register configuration

Table 6-1 Register table for Interrupt system

Address	Mnemonic	Туре	Description	Reset Value
0x640	MASK_0	RW	Byte 0 interrupt mask, level-triggered type {irq_host_cmd, irq_uart, rsvd, irq_dma, rsvd, time2, time1, time0} [7] irq_host_cmd [6] irq_uart [5] rsvd [4] irq_dma [3] rsvd [2] time2 [1] time1 [0] time0	0x00
0x641	MASK_1	RW	Byte 1 interrupt mask, level-triggered type {an_irq, irq_pwm, irq_zb_rt, irq_software, 4'b0} [7] an_irq [6] irq_pwm [5] irq_zb_rt [4] irq_software [3:0] rsvd	0x00
0x642	MASK_2	RW	Byte 2 interrupt mask, edge-triggered type {gpio2risc[2:0], 1'b0, pm_irq, irq_gpio, 2'b0} [7] gpio2risc[2] [6] gpio2risc[1] [5] gpio2risc[0] [4] irq_stimer, used together with address 0x74a[6] [3] pm_irq [2] irq_gpio [1:0] rsvd	0x00

Address	Mnemonic	Туре	Description	Reset Value
0x643	IRQMODE	RW	[0] interrupt enable [1] reserved (Multi-Address enable)	0x00
0x644	PRIO_0	RW	Byte 0 of priority 1: High priority; 0: Low priority	0x00
0x645	PRIO_1	RW	Byte 1 of priority	0x00
0x646	PRIO_2	RW	Byte 2 of priority	0x00
0x648	IRQSRC_0	R	Byte 0 of interrupt source	0x00
0x649	IRQSRC_1	R	Byte 1 of interrupt source	0x00
0x64a	IRQSRC_2	R	Byte 2 of interrupt source	0x00

6.2.1 Enable/Mask interrupt sources

Various interrupt sources could be enabled or masked by registers MASK_0~MASK_2 (address 0x640~0x642).

Interrupt sources of level-triggered type:

- → irq_host_cmd (0x640[7]): I2C Slave mapping mode or SPI Slave interrupt

- irq_software (0x641[4]): Software interrupt

Interrupt sources of edge-triggered type:

- ♦ irq_stimer (0x642[4]): System timer interrupt, should be used together with address 0x74a[6]
- → pm_irq (0x642[3]): 32kHz timer wakeup interrupt

6.2.2 Interrupt mode and priority

Interrupt mode is typically-used mode. Register IRQMODE (address 0x643)[0] should be set as 1b'1 to enable interrupt function.

IRQ tasks could be set as High or Low priority via registers PRIO_0~PRIO_2 (address 0x644~0x646). When more than one interrupt sources assert interrupt requests at the same time, CPU will respond depending on respective interrupt priority levels. It's recommended not to modify priority setting.

6.2.3 Interrupt source flag

Three bytes in registers IRQSRC_0~IRQSRC_2 (address 0x648~0x64a) serve to indicate IRQ sources. Once IRQ occurs from certain source, the corresponding IRQ source flag will be set as "1". User could identify IRQ source by reading address 0x648~0x64a.

When handling edge-triggered type interrupt, the corresponding IRQ source flag needs to be cleared via address 0x64a. Take the interrupt source irq_gpio for example: First enable the interrupt source by setting address 0x642 bit[2] as 1b'1; then set address 0x643 bit[0] as 1b'1 to enable the interrupt. In interrupt handling function, 24-bit data is read from address 0x648~0x64a to check which IRQ source is valid; if data bit[18] is 1, it means the irq_gpio IRQ source is valid. Clear this interrupt source by setting address 0x64a bit[2] as 1b'1.

As for level-type interrupt, IRQ interrupt source status needs to be cleared via setting corresponding module status register. Take Timer0 IRQ interrupt source for example: First enable the interrupt source by setting address 0x640 bit[0] as 1b'1; then set address 0x643 bit[0] as 1b'1 to enable the interrupt. In interrupt handling function, 24-bit data is read from address 0x648~0x64a to check which IRQ source is valid; if data bit[0] is 1, it means the Timer0 IRQ source is valid. Register TMR_STATUS (address 0x623) [0] should be written with 1b'1 to manually clear Timer0 status (refer to section **5.1.1 Register table**).

7 Interface

7.1 GPIO

The ST17H56 support up to 9 GPIOs. All digital IOs including PA[5], PB[4], PB[5], PC[2], PC[3], PC[4], PC[5], PC[7] and PD[2] can be used as GPIOs (general purpose IOs).

7.1.1 Basic configuration

Please refer to the table in **section 7.1.1.1** for various GPIO interface configuration.

7.1.1.1 GPIO lookup table

Table 7- 1GPIO lookup table

	Defects		Pad Function Mux				GPIO Setting						
Pin	Default function	Register=	Register=2	Register=1	Register=0	Register	Input (R)	IE	OEN	Output	Polarity	DS	Act as GPIO
PWM1/MDO/TX_													
CYC2PA/sar_ain<3	GPIO	RSVD	TX_CYC2PA	MDO	PWM1	0x5aa[3:2]	0x588[1]	0xb9[1]	0x58a[1]	0x58b[1]	0x58c[1]	0xbb[1]	0x58e[1]
>/PB[1]													
PWM3_N/MCK/P													
WM2/sar_ain<5>								afe_0xb9				afe_0xbb	
/	GPIO	Rsvd	PWM2	MCK	PWM3_N	0x5aa[7:6]	0x588[3]	[3]	0x58a[3]	0x58b[3]	0x58c[3]	[3]	0x58e[3]
PB[3]													
PWM2_N/													
I2C_MCK/													
UART_TX/								afe_0xb9				afe_0xbb	
sar_ain<6>/	GPIO	Rsvd	UART_TX	I2C_MCK	PWM2_N	0x5ab[1:0]	0x588[4]	[4]	0x58a[4]	0x58b[4]	0x58c[4]	[4]	0x58e[4]
pga_in<3>/													
PB[4]													
PWM4/													
I2C_MSD/													
UART_RX/	CDIO	Doved	LIART DV	120 1460	D)4/3.44	0.5-1/2.21	0. 500[5]	afe_0xb9	0.50-[5]	0.501.[5]	0.50-[5]	afe_0xbb	0.50-[5]
sar_ain<7>/	GPIO	Rsvd	UART_RX	I2C_MSD	PWM4	0x5ab[3:2]	0x588[5]	[5]	0x58a[5]	0x58b[5]	0x58c[5]	[5]	0x58e[5]
pga_in<2>/													
PB[5]													
PWM2_N/	GPIO	Rsvd	Rsvd	Rsvd	DIA/AA2 AI	0	0	0	0502[4]	0	0504[4]	0	0
PC[1]	GPIO				PWM2_N	0x5ac[3:2]	0x590[1]	0x591[1]	0x592[1]	0x593[1]	0x594[1]	0x595[1]	0x596[1]
DI/I2C_SD/													
I2C_MSD/													
MDI/	DI	UART_TX	MDI	I2C_MSD	DI/I2C_SD	0x5ad[1:0]	0x590[4]	0x591[4]	0x592[4]	0x593[4]	0x594[4]	0x595[4]	0x596[4]
UART_TX/													
PC[4]													

				Pad Function Mux						GPIO Setting	1		
Pin	Default function	Register=	Register=2	Register=1	Register=0	Register	Input (R)	IE	OEN	Output	Polarity	DS	Act as GPIO
CK/I2C_CK/													
I2C_MCK/													
MCK/	СК	UART_RX	МСК	I2C_MCK	CK/I2C_CK	0x5ad[3:2]	0x590[5]	0x591[5]	0x592[5]	0x593[5]	0x594[5]	0x595[5]	0x596[5]
UART_RX/													
PC[5]													
SWS/													
PWM3/	61446	,	,		6146	0.5.153.61	0.500[7]	0.504[7]	0.500[7]	0.500[7]	0.504[7]	0.505[7]	0.505(7)
sar_ain<0>/	SWS	/	/	PWM3	SWS	0x5ad[7:6]	0x590[7]	0x591[7]	0x592[7]	0x593[7]	0x594[7]	0x595[7]	0x596[7]
PC[7]													
PWM3/													
UART_TX/		,											
PWM2/	GPIO	/	PWM2	UART_TX	PWM3	0x5ae[5:4]	0x598[2]	0x599[2]	0x59a[2]	0x59b[2]	0x59c[2]	0x59d[2]	0x59e[2]
PD[2]													

*Notes:

- (1) All the registers in this table (IE, OEN, Register, Output, Input, DS, Act as GPIO, Polarity) can be set independently.
- (2) IE: Input enable, high active. 1: enable input, 0: disable input.
- (3) OEN: Output enable, low active. 0: enable output, 1: disable output.
- (4) Register: Configure multiplexed functions in "Pad Function Mux" column.
- (5) Output: configure GPO output.
- (6) Input: read GPI input.
- (7) DS: Drive strength. Default: 1.
- (8) Act as GPIO: enable (1) or disable (0) GPIO function.
- (9) Polarity: see section 7.1.2 Connection relationship between GPIO and related modules.
- (10) Default function: By default, PC[4]~PC[5] are used as DI/I2C_SD and CK/I2C_CK function, PC[7] is used as SWS function, while the other GPIOs are used as GPIO function.
- (11) Priority: "Act as GPIO" has the highest priority. To configure as multiplexed function, disable GPIO function first.
- (12) For all unused GPIOs, corresponding "IE" must be set as 0.
- (13) When SWS/PC[7] "IE" is set as 1, this pin must be fixed as pull-up/pull-down state (float state is not allowed).
- (14) afe_0xb6, afe_0xb9, afe_0xb8[5] and afe_0xbb marked in red color are analog registers; others are digital registers.
- (15) Rsvd: reserved for internal use.

7.1.1.2 Multiplexed functions

Each pin listed in Table 7-1 acts as the function in the "**Default Function**" column by default. By default, PC[4]~PC[5] are used as DI/I2C_SD and CK/I2C_CK function, PC[7] is used as SWS function, while the other GPIOs are used as GPIO function.

If a pin with multiplexed functions does not act as GPIO function by default, to use it as GPIO, first set the bit in "Act as GPIO" column as 1b'1. After GPIO function is enabled, if the pin is used as output, both the bits in "IE" and "OEN" columns should be set as 1b'0, then set the register value in the "Output" column; if the pin is used as input, both the bits in "IE" and "OEN" columns should be set as 1b'1, and the input data can be read from the register in the "Input" column.

To use a pin as certain multiplexed function (neither the default function nor GPIO function), first clear the bit in "Act as GPIO" column to disable GPIO function, and then configure "Register" in "Pad Function Mux" column to enable multiplexed function correspondingly.

Example: SWS/PWM3/sar_ain<0>/PC[7].

- (1) This pin acts as SWS function by default (0x596[7]=1b'0, 0x5ad[7:6]=2b'00).
- (2) To use this pin as GPIO function, first set address 0x596[7] (Act as GPIO) as 1b'1.
 - ♦ If the pin is used as general output, both address 0x591[7] (IE) and 0x592[7] (OEN) should be set as 1b'0, then configure address 0x593[7] (Output).
 - ♦ If the pin is used as general input, both address 0x591[7] (IE) and 0x592[7] (OEN) should be set to 1b'1, and the input data can be read from address 0x590[7] (Input).
- (3) To use it as PWM3 function, set address 0x596[7] (Act as GPIO) as 1b'0, and set 0x5ad[7:6] (Register) to 2b'01.

7.1.1.3 Drive strength

The registers in the "DS" column are used to configure the corresponding pin's driving strength: "1" indicates maximum drive level, while "0" indicates minimal drive level.

The "DS" configuration will take effect when the pin is used as output. It's set as the strongest driving level by default. In actual applications, driving strength can be decreased to lower level if necessary.

All GPIOs support drive strength up to 8mA (8mA when "DS"=1, 4mA when "DS"=0).

7.1.2 Connection relationship between GPIO and related modules

GPIO can be used to generate GPIO interrupt signal for interrupt system, counting or control signal for Timer/Counter module, or GPIO2RISC interrupt signal for interrupt system.

For the "Exclusive Or (XOR)" operation result for input signal from any GPIO pin and respective "Polarity" value, on one hand, it takes "And" operation with "irq" and generates GPIO interrupt request signal; on the other hand, it takes "And" operation with "m0/m1/m2", and generates counting signal in Mode 1 or control signal in Mode 2 for Timer0/Timer1/Timer2, or generates GPIO2RISC[0]/GPIO2RISC[1]/GPIO2RISC[2] interrupt request signal.

GPIO interrupt request signal = | ((input ^ polarity) & irq);

```
Counting (Mode 1) or control (Mode 2) signal for Timer0 = | ((input ^ polarity) & m0);

Counting (Mode 1) or control (Mode 2) signal for Timer1 = | ((input ^ polarity) & m1);

Counting (Mode 1) or control (Mode 2) signal for Timer2 = | ((input ^ polarity) & m2);

GPIO2RISC[0] interrupt request signal = | ((input ^ polarity) & m0);

GPIO2RISC[1] interrupt request signal = | ((input ^ polarity) & m1);

GPIO2RISC[2] interrupt request signal = | ((input ^ polarity) & m2).
```

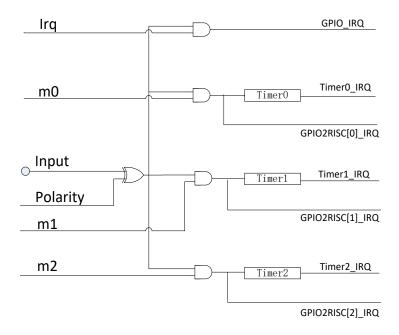


Figure 7-1 Logic relationship between GPIO and related modules

Please refer to Table 7- 2 and Table 6- 1 to learn how to configure GPIO for interrupt system or Timer/Counter (Mode 1 or Mode 2).

(1) First enable GPIO function, enable IE and disable OEN. Please see section 7.1.1 Basic configuration.

(2) GPIO IRQ signal:

Select GPIO interrupt trigger edge (positive edge or negative edge) via configuring "Polarity", and set corresponding GPIO interrupt enabling bit "Irq".

Then set address 0x5b5[3] to enable GPIO IRQ.

Finally enable GPIO interrupt (irq_gpio) via MASK_2 (address 0x642[2]).

User can read addresses $0x5e1 \sim 0x5e3$ to see which GPIO asserts GPIO interrupt request signal. Note: $0x5e1[7:0] --> PB[7] \sim PB[7] \sim PB[7] \sim PD[7] \sim PD[7]$

(3) Timer/Counter counting or control signal:

Configure "**Polarity**". In Timer Mode 1, it determines GPIO edge when Timer Tick counting increases. In Timer Mode 2, it determines GPIO edge when Timer Tick starts counting.

Then set "m0/m1/m2" to specify the GPIO which generates counting signal (Mode 1)/control signal (Mode 2) for Timer0/Timer1/Timer2.

User can read addresses $0x5e9^{0}x5eb/0x5f1^{0}x5f3/0x5f9^{0}x5fb$ to see which GPIO asserts counting signal (in Mode 1) or control signal (in Mode 2) for Timer0/Timer1/Timer2. Note: Timer0: $0x5e9[7:0] \longrightarrow PB[7]^{PB[0]}$, $0x5ea[7:0] \longrightarrow PC[7]^{PC[0]}$, $0x5eb[2] \longrightarrow PD[2]$; Timer1: $0x5f1[7:0] \longrightarrow PB[7]^{PB[0]}$, $0x5f2[7:0] \longrightarrow PC[7]^{PC[0]}$, $0x5f3[2] \longrightarrow PD[2]$; Timer2: $0x5f9[7:0] \longrightarrow PB[7]^{PB[0]}$, $0x5fa[7:0] \longrightarrow PC[7]^{PC[0]}$, $0x5fb[2] \longrightarrow PD[2]$.

(4) GPIO2RISC IRQ signal:

Select GPIO2RISC interrupt trigger edge (positive edge or negative edge) via configuring "Polarity", and set corresponding GPIO enabling bit "m0"/"m1"/"m2".

Enable GPIO2RISC[0]/GPIO2RISC[1]/GPIO2RISC[2] interrupt via MASK_2, i.e. "gpio2risc[0]" (address 0x642[5]) / "gpio2risc[1]" (address 0x642[6]) / "gpio2risc[2]" (address 0x642[7]).

Table 7- 2GPIO lookup table2

Pin	Input (R)	Polarity 1: active low 0: active high	Irq	m0	m1	m2
PB[1]	0x588[1]	0x58c[1]	0x58f[1]	0x5b9[1]	0x5c1[1]	0x5c9[1]
PB[3]	0x588[3]	0x58c[3]	0x58f[3]	0x5b9[3]	0x5c1[3]	0x5c9[3]
PB[4]	0x588[4]	0x58c[4]	0x58f[4]	0x5b9[4]	0x5c1[4]	0x5c9[4]
PB[5]	0x588[5]	0x58c[5]	0x58f[5]	0x5b9[5]	0x5c1[5]	0x5c9[5]
PC[1]	0x590[1]	0x594[1]	0x597[1]	0x5ba[1]	0x5c2[1]	0x5ca[1]
PC[4]	0x590[4]	0x594[4]	0x597[4]	0x5ba[4]	0x5c2[4]	0x5ca[4]
PC[5]	0x590[5]	0x594[5]	0x597[5]	0x5ba[5]	0x5c2[5]	0x5ca[5]
PC[7]	0x590[7]	0x594[7]	0x597[7]	0x5ba[7]	0x5c2[7]	0x5ca[7]
PD[2]	0x598[0]	0x59c[0]	0x59f[0]	0x5bb[0]	0x5c3[0]	0x5cb[0]

7.1.3 Pull-up/Pull-down resistor

The GPIOs including PB[4] and PB[5], support configurable pull-up resistor of rank x1 and x100 or pull-down resistor of rank x10 which are all disabled by default. Analog registers afe_0x09[1:0] and afe_0x09[3:2]serve to control the pull-up/pull-down resistor for each of these GPIOs.

The GPIOs including PC[4], PC[5], PC[7] and PD[2] support pull-down resistor of rank x10 which are all disabled by default. Analog registers including afe_0x0b[7], afe_0x0c[0], afe_0x0c[2], and afe_0x0c[5] serve to control the pull-down resistor for each of these GPIOs.

Please refer to Table 7-3 for details.

Take the PB[4] as an example: Setting analog register afe_0x09[1:0] to 2b'01/2b'10/2b'11 is to respectively enable pull-up resistor of rank x100 / pull-up resistor of rank x1 / pull-down resistor of rank x10 for PB[4]; Clearing the two bits (default value) disables pull-up and pull-down resistor for PB[1].

Take the PC[4] as another example: Setting analog register afe_0x0b[7] to 1b'1 is to enable pull-down resistor of rank x10 for PC[4]; Clearing the bit (default value) disables pull-down resistor for PC[4].

Table 7-3 Analog registers for pull-up/pull-down resistor control

Address	Mnemonic	Default	Description
afe_0x09<1:0>	pullupdown_ctrl<1:0>	00	PB[4] pull up/down control 00 – No pull up/down resistor 01 – x100 pull-up resistor 10 – x1 pull-up resistor 11 – x10 pull-down resistor

Address	Mnemonic	Default	Description
			PB[5] pull up/down control
			00 – No pull up/down resistor
afe_0x09<3:2>	pullupdown_ctrl<1:0>	00	01 – x100 pull-up resistor
			10 – x1 pull-up resistor
			11 – x10 pull-down resistor
			{PC[4]~ PC[0], PA[4]~ PA[2]} pull down
			control
			[7]: PC[4]
afe_0x0b<7:0>	pulldown_ctrl<7:0>	0x00	[6]: PC[3]
			[5]: PC[2]
			0 – No pull down resistor
			1 – Enable x10 pull-down resistor
			{PD[3]~ PD[0], PC[7]~ PC[5]} pull down
			control
			[5]: PD[2]
afe_0x0c<6:0>	pulldown_ctrl<6:0>	000000	[2]: PC[7]
			[0]: PC[5]
			0 – No pull down resistor
			1 – Enable x10 pull-down resistor

7.2 SWS

The ST17H56 supports Single Wire Slave (SWS) interface for debugging. SWS represents the Slave device of the single wire communication system developed by . The maximum data rate can be up to 2Mbps.

SWS usage is not supported in power-saving mode (deep sleep or suspend). The ST17H56 has to be waked up by using IO or 32k RC wakeup, so that it can respond to the Swire commands for debug/programming.

7.3 I2C

The ST17H56 embeds I2C hardware module, which could act as Master mode or Slave mode. I2C is a popular inter-IC interface requiring only 2 bus lines, a serial data line (SDA) and a serial clock line (SCL).

I2CSCT (address 0x03) bit[1] and bit[4] serves to select I2C Master mode or Slave mode. By default, 0x03 bit[4] is set as 1b'1 and bit[1] is set as 1b'0, therefore I2C module of the ST17H56 acts as Slave mode by default.

7.3.1 Communication protocol

I2C module supports standard mode (100kbps) and Fast-mode (400kbps) with restriction that system clock must be by at least 10x of data rate.

Two wires, SDA and SCL (SCK) carry information between Master device and Slave device connected to the bus. Each device is recognized by unique address (ID). Master device is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. Slave device is the device addressed by a Master.

Both SDA and SCL are bidirectional lines connected to a positive supply voltage via a pull-up resister. It's recommended to use external 3.3kohm pull-up resistor. For standard mode, the internal pull-up resistor of rank x1 can be used instead of the external 3.3kohm pull-up.

When the bus is free, both lines are HIGH. It's noted that data in SDA line must keep stable when clock signal in SCL line is at high level, and level state in SDA line is only allowed to change when clock signal in SCL line is at low level.

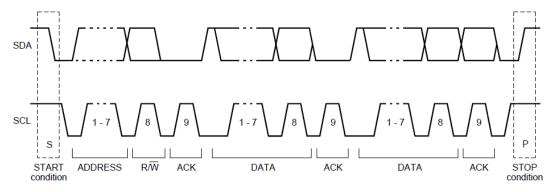


Figure 7-2 I2C timing chart

7.3.2 Register table

Table 7-4 Register configuration for I2C

Address	Name	R/W	Description	Reset Value
0x00	12CSP	RW	I2C master clock speed	0x1f
0x01	I2CMID	RW	[7:1] I2C master ID	0x5c
0x02	I2CMST	RW	[0]: master busy[1]: master packet busy[2]: master received status0 for ACK; 1 for NAK	0x00
0x03	12CSCT	RW	[0]: address auto increase enable	0x11

Address	Name	R/W	Description	Reset Value
			[1]: I2C master enable (1)	
			[2]: sub-mode select in I2C slave mode	
			0- DMA mode	
			1- Mapping Mode	
			[4]: I2C slave enable (1)	
0x04	I2CAD	RW	[7:0] Data buffer in master mode	0x5a
0x05	I2CDW	RW	[7:0] Data buffer in master mode	0xf1
0x06	I2CDR	RW	[7:0] Data buffer for Read or Write in master mode	0x00
0x07	I2CCLT	RW	[0]: launch ID cycle [1]: launch address cycle (send I2CAD data) [2]: launch data write cycle [3]: launch data read cycle For Master Write: 0: I2CAD&I2CDW, 1: I2CAD&I2CDW&I2CDR) To write 3 bytes: bit[3]=1; To write 2 bytes: bit[3]=0. For Master Read: always 1. [4]: launch start cycle [5]: launch stop cycle [6]: enable read ID [7]: enable ACK in read command	0x00
0x20	ADROFFSET	RO	[6:0] mapped host address offset	0x00
0x21	HOSTIRQ	RO	[0]: host cmd irq flag, I2C host operation have happened. Write 1 to clear. [1]: host read flag, I2C host operation have happened and is read operation. Write 1 to clear ([2]: software irq flag, write 1 to clear [3]: software irq, write 1 to set	0x00
0x22	MAPADRL	R/W	Low byte of Mapping mode buffer address	0x80
0x23	MAPADRH	R/W	High byte of Mapping mode buffer address	0x9f

7.3.3 I2C Slave mode

I2C module of the ST17H56 acts as Slave by default (Address 0x03[4] should be set as 1b'1 to enable I2C Slave mode).

I2C slave address can be configured via register I2CID (address 0x01) [7:1].

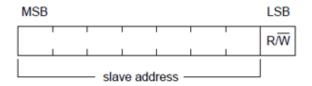


Figure 7- 3 Byte consisted of slave address and R/W flag bit I2C slave mode supports two sub modes including Direct Memory Access (DMA) mode and

Mapping mode, which is selectable via I2CSCT (address 0x03) bit[2].

In I2C Slave mode, Master could initiate transaction anytime. I2C slave module will reply with ACK automatically. To monitor the start of I2C transaction, user could set interrupt from GPIO for SCA or SCL.

7.3.3.1 DMA mode

By default, I2CSCT (address 0x03) bit[2] is set as 1b'0, therefore DMA mode is selected by default.

In DMA mode, other devices (Master) could access (read/write) designated address in Register and/or SRAM of the ST17H56 according to I2C protocol. I2C module of the ST17H56 will execute the read/write command from I2C Master automatically. But user needs to notice that the system clock shall be at least 10x faster than I2C bit rate.

The access address designated by Master is offset by 0x800000. In the ST17H56, Register address starts from 0x800000 and SRAM address starts from 0x808000. For example, if Addr High(AddrH) is 0xaa and Addr Low (AddrL) is 0xcc, the real address of accessed data is 0x80aacc.

In DMA mode, Master could read/write data byte by byte. The designated access address is initial address and it supports auto increment by setting I2CSCT (address 0x03) bit[0] to 1b'1.

Read Format in DMA mode

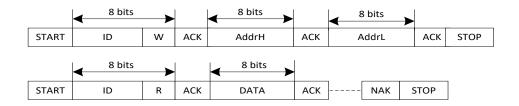


Figure 7-4 Read format in DMA mode

Write Format in DMA mode

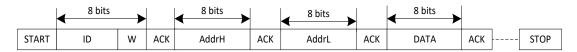


Figure 7-5 Write format in DMA mode

7.3.3.2 Mapping mode

Mapping mode could be enabled via setting register I2CSCT (address 0x03) bit[2] as 1b'1.

In Mapping mode, data written and read by I2C master will be redirected to specified 128-byte buffer in SRAM. User could specify the initial address of the buffer by configuring registers MAPADRL (address 0x22, lower byte) and MAPADRH (address 0x23, higher byte). The first 64-byte buffer is for written data and following 64-byte buffer is for read data. Every time the data

access will start from the beginning of the Write-buffer/Read-buffer after I2C stop condition occurs. The last accessed data address could be checked in register ADROFFSET (address 0x20) [6:0] which is only updated after I2C STOP occurs.

Read Format in mapping mode

Figure 7- 6 Read format in Mapping mode

Write Format in mapping mode

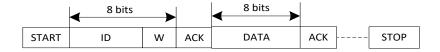


Figure 7-7 Write format in Mapping mode

7.3.4 I2C Master mode

I2CSCT (address 0x03) bit[1] should be set as 1b'1 to enable I2C master mode for the ST17H56.

Address 0x00 serves to set I2C Master clock: F_{I2C} = System Clock / (4 *clock speed configured in address 0x00).

A complete I2C protocol contains START, Slave Address, R/W bit, data, ACK and STOP. Slave address could be configured via address 0x01[7:1].

I2C Master (i.e. I2C module of the ST17H56) could send START, Slave Address, R/W bit, data and STOP cycle by configuring address 0x07. I2C master will send enabled cycles in the correct sequence.

Address 0x02 serves to indicate whether Master/Master packet is busy, as well as Master received status. Bit[0] will be set to 1 when one byte is being sent, and this bit can be automatically cleared after a start signal/address byte/acknowledge signal/data /stop signal is sent. Bit[1] is set to 1 when the start signal is sent, and this bit will be automatically cleared after the stop signal is sent. Bit[2] indicates whether to succeed in sending acknowledgement signal.

7.3.4.1 I2C Master Write transfer

I2C Master has 3-byte buffer for write data, which are I2CAD (0x04), I2CDW (0x05) and I2CDR (0x06). Write transfer will be completed by I2C master module.

For example, to implement an I2C write transfer with 3-byte data, which contains START, Slave Address, Write bit, ack from Slave, 1st byte, ack from slave, 2nd byte, ack from slave, 3rd byte, ack from slave and STOP, user needs to configure I2C slave address to I2CID (0x01) [7:1], 1st byte data to I2CAD, 2nd byte data to I2CDW and 3rd byte to I2CDR. To start I2C write transfer, I2CCLT (0x07) is configured to 0x3f (0011 1111). I2C Master will launch START, Slave address, Write bit, load ACK

to I2CMST (0x02) [2], send I2CAD data, load ACK to I2CMST[2], send I2CDW data, load ACK to I2CMST[2], send I2CDR data, load ACK to I2CMST[2] and then STOP sequentially.

For I2C write transfer whose data are more than 3 bytes, user could split the cycles according to I2C protocol.

7.3.4.2 I2C Master Read transfer

I2C Master has one byte buffer for read data, which is I2CDR (0x06). Read transfer will be completed by I2C Master.

For example, to implement an I2C read transfer with 1 byte data, which contains START, Slave Address, Read bit, Ack from Slave, 1st byte from Slave, Ack by master and STOP, user needs to configure I2C slave address to I2CID (0x01) [7:1]. To start I2C read transfer, I2CCLT (0x07) is configured to 0xf9 (1111 1001). I2C Master will launch START, Slave address, Read bit, load ACK to I2CMST (0x02) [2], load data to I2CDR, reply ACK and then STOP sequentially.

For I2C read transfer whose data are more than 1 byte, user could split the cycles according to I2C protocol.

7.4 UART

The ST17H56 embeds UART (Universal Asynchronous Receiver/Transmitter) to implement full-duplex transmission and reception via UART TX and RX interface. Both TX and RX interface are 4-layer FIFO (First In First Out) interface.

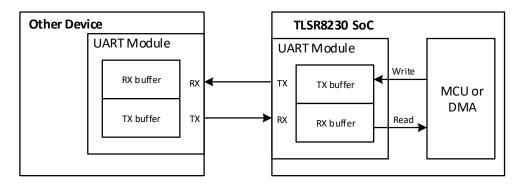


Figure 7-8 UART communication

As shown in Figure 7- 8, data to be sent is first written into TX buffer by MCU or DMA, then UART module transmits the data from TX buffer to other device via pin TX. Data to be read from other device is first received via pin RX and sent to RX buffer, then the data is read by MCU or DMA.

Address	Name	R/W	Description	Re
	Table 7-	5 Re	gister configuration for UART	

Address	Name	R/W	Description	Reset Value
0x90	uart_data_buf0	R/W	write/read buffer[7:0]	
0x91	Uart_data_buf1	R/W	Write/read buffer[15:8]	*No power
0x92	Uart_data_buf2	RW	Write/read buffer[23:16]	on reset
0x93	Uart_data_buf3	R/W	Write/read buffer[31:24]	

Datasheet for ST17H56

Address	Name	R/W	Description	Reset Value
0x94	uart_clk_div[7:0]	RW	uart clk div register:	0xff
			uart_sclk = sclk/(uart_clk_div[14:0]+1)	
0x95	Uart_clk_div[15:8]	R/W	uart_clk_div[15]:	Oxff OxOf OxOe Oxa5 Ox44 OxOf
			1: enable clock divider, 0: disable.	
			[3:0] bwpc, bit width, should be larger	
			than 2	0x0f 0x0f 0x0e 0x0e 0xa5 0x44 0x0f
			Baudrate = uart_sclk/(bwpc+1)	
0x96	Uart ctrl0	R/W	[4] rx dma enable	0x0f
			[5] tx dma enable	
			[6] rx interrupt enable	Oxff OxOf OxOf OxOe Oxa5 Ox44 OxOf
			[7]tx interrupt enable	
			[0] cts select, 0: cts_i, 1: cts _i inverter	
			[1]:cts enable, 1: enable, 0, disable	
			[2]:Parity, 1: enable, 0 :disable	
0x97	Uart_ctrl1	R/W	[3]: even Parity or odd	0x0e
	_		[5:4]: stop bit	
			00: 1 bit, 01: 1.5bit, 1x: 2bits	
			[6]: ttl	
			[7]: uart tx, rx loopback	
			[3:0] rts trig level	
0,00	Hort atri2	D /\A/	[4] rts Parity	Oxff OxOf OxOf OxOe Oxa5 Ox44 OxOf OxOO
0x98	Uart_ctrl2	R/W	[5] rts manual value [6] rts manual enable	
			[7] rts enable	
			[3:0]: rx_irq_trig level	
0x99	Uart_ctrl3	R/W	[7:4] tx_irq_trig level	0x44
			The setting is transfer one bytes need	
			cycles base on uart_clk. For example, if	
			transfer one bytes (1 start bit+8bits	
0x9a	R_rxtimeout_o[7:0]	R/W	data+1 priority bit+2 stop bits) total 12	0x0f
			bits, this register setting should be	
			(bwpc+1)*12.	
			2'b00:rx timeout time is	
			r_rxtimeout[7:0]	
			2'b01:rx timeout time is	
			r_rxtimeout[7:0]*2	
			2'b10:rx timeout time is	
O. Ob	Dtime a suit	D /\A/	r_rxtimeout[7:0]*3	000
0x9b	R_rxtimeout_o[9:8]	R/W	3'b11: rx timeout time is	UXUU
			r_rxtimeout[7:0]*4	
			R_rxtimeout is for rx dma to decide the	
			end of each transaction. Supposed the	
			interval between each byte in one	
			transaction is very short.	
0x9c	Buf_cnt	R	[3:0]: r_buf_cnt	OxOO
5,50		'`	[7:4]: t_buf_cnt	5,00
0x9d	Uart_sts	R	[2:0] rbcnt	0x00
JA34		'`	[3] irq	5,00

Address	Name	R/W	Description	Reset Value
			[6:4]wbcnt	
			[6] write 1 clear rx	
			[7] rx_err, write 1 clear tx	

^{*}Note: Addresses 0x90~0x93 won't be reset after power on.

Addresses 0x90~0x93 serve to write data into TX buffer or read data from RX buffer.

Addresses 0x94~0x95 serve to configure UART clock.

Address 0x96 serves to set baud rate (bit[3:0]), enable RX/TX DMA mode (bit[4:5]), and enable RX/TX interrupt (bit[6:7]).

Address 0x97 bit[2:3] serve to enable parity bit and select even/odd parity, bit[5:4] serve to select 1/1.5/2 bits for stop bit, and bit[6] serves to configure whether RX/TX level should be inverted.

Address 0x99 serves to configure the number of bytes in RX/TX buffer to trigger interrupt.

The number of bytes in RX/TX buffer can be read from address 0x9c.

8 PWM

The ST17H56 supports 4-channel PWM (Pulse-Width-Modulation) output. PWM#n_N ($n=1^4$) indicates inverted output of corresponding PWM#n.

8.1 Register table

Table 1 Register table for PWM

Address	Mnemonic	Туре	Type Description	
0x780	PWM_EN0	R/W	[0]: Rsvd /W [1:4]: Enable/Disable PWM1~PWM4 0disable, 1enable	
0x781	PWM_EN1	R/W	[0]: Rsvd	0x00
0x782	PWM_CLK	R/W	(PWM_CLK+1)*sys_clk	0x00
0x783	PWM_MODE	R/W	[3:0]: Rsvd	0x00
0x784	PWM_CC0	R/W	[4:1]:1'b1 invert PWM4~PWM1 output	0x00
0x785	PWM_CC1	R/W	[4:1]:1'b1 invert PWM4_INV~ PWM1_INV output	0x00
0x786	PWM_CC2	R/W	[4:1]: Signal frame polarity of PWM4~PWM1 1b'0-high level first 1b'1-low level first	0x00
0x787	PWM_32K_MODE	R/W	[1:4]: Set clock mode for PWM1~PWM4 1 use pwm_32kclk 0 use pwm_sysclk	0x00
0x788~ 0x793	reserved			
0x794	PWM_TCMP0	R/W	Rsvd	0x00
0x795	PWM_TCMP0	R/W	Rsvd	0x00
0x796	PWM_TMAX0	R/W	Rsvd	0x00
0x797	PWM_TMAX0	R/W	Rsvd	0x00
0x798	PWM_TCMP1	R/W	[7:0] bits 7-0 of PWM1's high time or low time(if pola[1]=1)	0x00
0x799	PWM_TCMP1	R/W	[15:8] bits 15-8 of PWM1's high time or low time	0x00
0x79a	PWM_TMAX1	R/W	[7:0] bits 7-0 of PWM1's cycle time	0x00
0x79b	PWM_TMAX1	R/W	[15:8] bits 15-8 of PWM1's cycle time	0x00
0x79c	PWM_TCMP2	R/W	[7:0] bits 7-0 of PWM2's high time or low time (if pola[2]=1)	0x00
0x79d	PWM_TCMP2	R/W	[15:8] bits 15-8 of PWM2's high time or low time	0x00
0x79e	PWM_TMAX2	R/W	[7:0] bits 7-0 of PWM2's cycle time	0x00
0x79f	PWM_TMAX2	R/W	[15:8] bits 15-8 of PWM2's cycle time	0x00
0x7a0	PWM_TCMP3	R/W	[7:0] bits 7-0 of PWM3's high time or low time (if pola[3]=1)	0x00

Address	Mnemonic	Туре	Description	Reset Value
0x7a1	PWM_TCMP3	R/W	[15:8] bits 15-8 of PWM3's high time or low time	0x00
0x7a2	PWM TMAX3	R/W	[7:0] bits 7-0 of PWM3's cycle time	0x00
0x7a3	PWM_TMAX3	R/W	[15:8] bits 15-8 of PWM3's cycle time	0x00
0x7a4	PWM_TCMP4	R/W	[7:0] bits 7-0 of PWM4's high time or low time (if pola[4]=1)	0x00
0x7a5	PWM_TCMP4	R/W	[15:8] bits 15-8 of PWM4's high time or low time	0x00
0x7a6	PWM_TMAX4	R/W	[7:0] bits 7-0 of PWM4's cycle time	0x00
0x7a7	PWM_TMAX4	R/W	[15:8] bits 15-8 of PWM4's cycle time	0x00
0x7ac	PWM_PNUM0	R/W	Rsvd	0x00
0x7ad	PWM_PNUM0	R/W	Rsvd	0x00
0x7ae~ 0x7af	reserved			
0x7b0	PWM_MASK0	R/W	INT mask [3:6] PWM1~PWM4 frame int 0: disable, 1: enable	0x00
0x7b1	PWM_INT0	R/W	INT status, write 1 to clear [3:6]: PWM1~PWM4 cycle done int (PWM_CNT==PWM_TMAX)	0x00
0x7b2	PWM_MASK1	R/W	Rsvd	0x00
0x7b3	PWM_INT1	R/W	Rsvd	0x00
0x7b4	PWM_CNT0	R	Rsvd	0x00
0x7b5	PWM_CNT0		Rsvd	0x00
0x7b6	PWM_CNT1	R	[7:0]PWM1 cnt value	0x00
0x7b7	PWM_CNT1		[15:8]PWM1 cnt value	0x00
0x7b8	PWM_CNT2	R	[7:0]PWM2 cnt value	0x00
0x7b9	PWM_CNT2		[15:8]PWM2 cnt value	0x00
0x7ba	PWM_CNT3	R	[7:0]PWM3 cnt value	0x00
0x7bb	PWM_CNT3		[15:8]PWM3 cnt value	0x00
0x7bc	PWM_CNT4	R	[7:0]PWM4 cnt value	0x00
0x7bd	PWM_CNT4		[15:8]PWM4 cnt value	0x00
0x7c0	PWM_NCNT0	R	Rsvd	0x00
0x7c1	PWM_NCNT0		Rsvd	0x00
0x7c4	PWM_TCMP0_SHADOW	R/W	Rsvd	0x55
0x7c5	PWM_TCMP0_SHADOW	R/W	Rsvd	0x55
0x7c6	PWM_TMAX0_SHADOW	R/W	Rsvd	0x00
0x7c7	PWM_TMAX0_SHADOW	R/W	Rsvd	0x00
0x7c8	FIFO_DATO_ENTRY	W	Rsvd	
0x7c9	FIFO_DAT1_ENTRY	W	Rsvd	
0x7ca	FIFO_DAT2_ENTRY	W	Rsvd	
0x7cb	FIFO_DAT3_ENTRY	W	Rsvd	
0x7cc	FIFO_NUM_LVL	R/W	Rsvd	0x00
0x7cd	FIFO_SR	R	Rsvd	0x00
0x7ce	FIFO_CLR	W1	Rsvd	0x00

8.2 Enable PWM

Register PWM_EN0 (address 0x780[4:1]) serve to enable PWM4~PWM1 respectively via writing "1" for the corresponding bits.

8.3 Set PWM clock

PWM clock derives from system clock. Register PWM_CLK (address 0x782) serves to set the frequency dividing factor for PWM clock. Formula below applies:

8.4 PWM waveform, polarity and output inversion

Each PWM channel has independent counter and 2 status including "Count" and "Remaining". Count and Remaining status form a signal frame.

8.4.1 Waveform of signal frame

When PWM#n is enabled, first PWM#n enters Count status and outputs High level signal by default. When PWM#n counter reaches cycles set in register PWM_TCMP#n (address 0x798~0x799, 0x79c~0x79d, 0x7a0~0x7a1, 0x7a4~0x7a5), PWM#n enters Remaining status and outputs Low level till PWM#n cycle time configured in register PWM_TMAX#n (address 0x79a~0x79b, 0x79e~0x79f, 0x7a2~0x7a3, 0x7a6~0x7a7) expires.

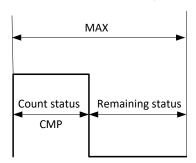


Figure 8-1 A signal frame

An interruption will be generated at the end of each signal frame if enabled via register PWM_MASK0 (address 0x7b0[3:6]).

8.4.2 Invert PWM output

PWM#n and PWM#n_N output could be inverted independently via register PWM_CCO (address 0x784) and PWM_CC1 (address 0x785). When the inversion bit is enabled, waveform of the corresponding PWM channel will be inverted completely.

8.4.3 Polarity for signal frame

By default, PWM#n outputs High level at Count status and Low level at Remaining status. When the corresponding polarity bit is enabled via register PWM_CC2 (address 0x786[4:1]), PWM#n will output Low level at Count status and High level at Remaining status.

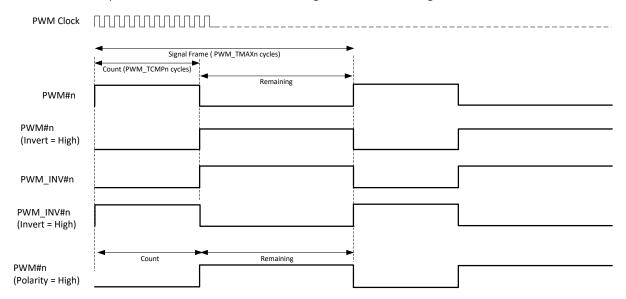


Figure 8-2 PWM output waveform chart

8.5 PWM mode

PWM1~PWM4 only support Continuous mode.

8.5.1 Continuous mode

In this mode, PWM#n continuously sends out signal frames. PWM#n should be disabled via address 0x780 to stop it; when stopped, the PWM output will turn low immediately.

During Continuous mode, waveform could be changed freely via PWM_TCMP#n and PWM_TMAX#n. New configuration for PWM_TCMP#n and PWM_TMAX#n will take effect in the next signal frame.

After each signal frame is finished, corresponding PWM cycle done interrupt flag bit (0x7b1[3:6]) will be automatically set to 1b'1. If the interrupt is enabled by setting PWM_MASKO (address 0x7b0[3:6]) as 1b'1, a frame interruption will be generated. User needs to write 1b'1 to the flag bit to manually clear it.

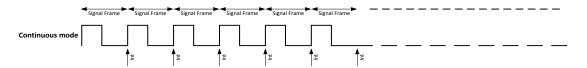


Figure 8-3 Continuous mode

8.5.1.1 Set PWM clock mode

In continuous mode, by default PWM1~PWM4 use the system clock mode. To enable PWM to generate waveforms in suspend state, the 32kHz clock mode can be enabled via the configuration sequence below.

- 1) Disable PWM clock (0x64[4]=0), and enable PWM reset (0x61[4]=1).
- 2) Set $0x787[1]^{2}[4]$ as 1b'1 to switch base clock to 32kHz for PWM1 $^{2}PWM4$.
- 3) Enable PWM clock (0x64[4]=1) and PWM_32kHz clock (0x65[1]=1), disable PWM reset (0x61[4]=0).

Then corresponding PWM can work normally even under 32kHz clock.

8.6 PWM interrupt

There are 4 interrupt sources from PWM function.

After each signal frame, PWM#n (n=1~4) will generate a frame-done IRQ (Interrupt Request) signal.

To enable PWM interrupt, the total enabling bit "irq_pwm" (address 0x641[6], see **section 6 Interrupt**) should be set as 1b'1. To enable various PWM interrupt sources, PWM_MASK0 (address 0x7b0[3:6]) should be set as 1b'1 correspondingly.

Interrupt status can be cleared via register PWM_INTO (address 0x7b1[3:6]).

9 Quadrature Decoder

The ST17H56 embeds one quadrature decoder (QDEC) which is designed mainly for applications such as wheel. The QDEC implements debounce function to filter out jitter on the two phase inputs, and generates smooth square waves for the two phase.

9.1 Input pin selection

The QDEC supports two-phase input; each input is selectable from the 3 pins of PortB via setting address 0xd2[2:0] (for channel a)/0xd3[2:0] (for channel b).

Address 0xd2[2:0]/0xd3[2:0] Pin 0 Rsvd (PD[1]) 1 Rsvd (PD[3]) 2 Rsvd (PC[3]) 3 PB[3] 4 PB[4] 5 PB[5] 6 Rsvd (PA[0]) 7 Rsvd (PA[1])

Table 9- 1 Input pin selection

Note: To use corresponding IO as QDEC input pin, it's needed first to enable GPIO function, enable "IE" (1) and disable "OEN" (1) for this IO.

9.2 Common mode and double accuracy mode

The QDEC embeds an internal hardware counter, which is not connected with bus.

Address 0xd7[0] serves to select common mode or double accuracy mode.

For each wheel rolling step, two pulse edges (rising edge or falling edge) are generated.

If address 0xd7[0] is cleared to select common mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 only when the same rising/falling edges are detected from the two phase signals.

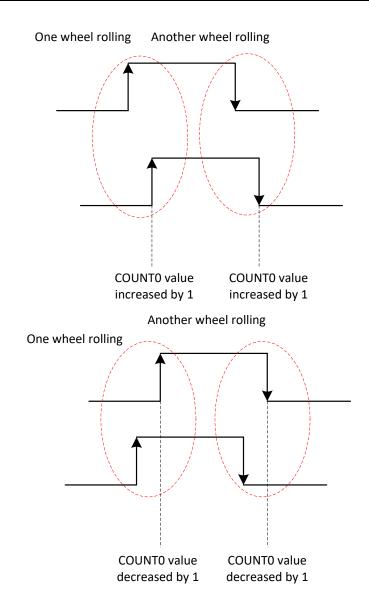


Figure 9-1 Common mode

If address 0xd7[0] is set to 1b'1 to select double accuracy mode, the QDEC Counter value (real time counting value) is increased/decreased by 1 on each rising/falling edge of the two phase signals; the COUNTO will be increased/decreased by 2 for one wheel rolling.

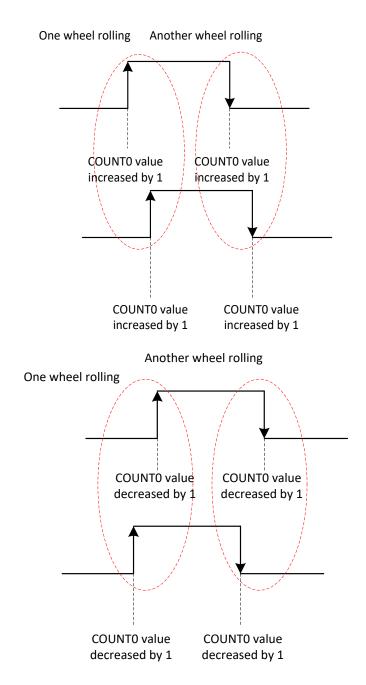


Figure 9-2 Double accuracy mode

9.3 Read real time counting value

Neither can Hardware Counter value be read directly via software, nor can the counting value in address 0xd0 be updated automatically.

To read real time counting value, first write address 0xd8[0] with 1b'1 to load Hardware Counter data into the QDEC_COUNT register, then read address 0xd0.

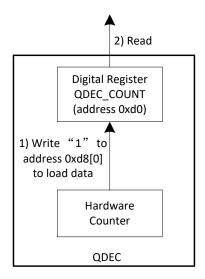


Figure 9-3 Read real time counting value

9.4 QDEC reset

Address 0xd6[0] serves to reset the QDEC. The QDEC Counter value is cleared to zero.

9.5 Other configuration

The QDEC supports hardware debouncing. Address 0xd1[2:0] serves to set filtering window duration. All jitter with period less than the value will be filtered out and thus does not trigger count change.

Address 0xd1[4] serves to set input signal initial polarity.

Address 0xd1[5] serves to enable shuttle mode. Shuttle mode allows non-overlapping two phase signals as shown below.

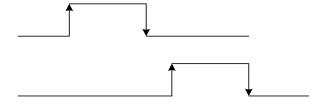


Figure 9-4 Shuttle mode

9.6 Timing sequence

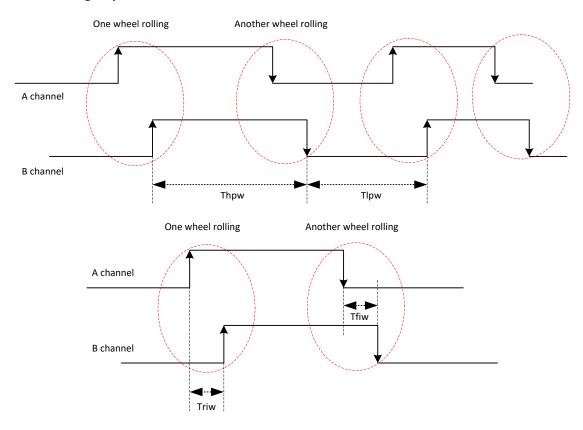


Figure 9-5 Timing sequence chart

Table 9- 2 Timing

Time interval	Min Value
Thpw (High-level pulse width)	2^(n+1) *clk_32kHz *3 (n=0xd1[2:0])
Tlpw (Low-level pulse width)	2^(n+1) *clk_32kHz *3 (n=0xd1[2:0])
Triw (Interval width between two rising edges)	2^(n+1) *clk_32kHz (n=0xd1[2:0])
Tfiw (Interval width between two falling edges)	2^(n+1) *clk_32kHz (n=0xd1[2:0])

QDEC module works based on 32kHz clock to ensure it can work in suspend mode. QDEC module supports debouncing function, and any signal with width lower than the threshold (i.e. "2^(n+1) *clk_32kHz *3 (n=0xd1[2:0])) will be regarded as jitter. Therefore, effective signals input from Channel A and B should contain high/low level with width Thpw/Tlpw more than the threshold. The 2^n *clk_32kHz clock is used to synchronize input signal of QDEC module, so the interval between two adjacent rising/falling edges from Channel A and B, which are marked as Triw and Tfiw, should exceed "2^(n+1) *clk_32kHz".

Only when the timing requirements above are met, can QDEC module recognize wheel rolling times correctly.

9.7 Register table

Table 9-3 Register table for QDEC

Address	Mnemonic	Туре	Description	Reset value
0xd0	QDEC_COUNT	R	QDEC Counting value (read to clear): Pulse edge number	0x00
0xd1	QDEC_CC	R/W	[2:0]: filter time (can filter 2^n *clk_32kHz*2 width deglitch) [4]: pola, input signal pola 0: no signal is low, 1: no signal is high [5]: shuttle mode 1 to enable shuttle mode	0x00
0xd2	QDEC_CHNA	R/W	[2:0] QDEC input pin select for channel a choose 1 of 3 pins for input channel a 0~7: {rsvd (PD[1]), rsvd (PD[3]), rsvd (PC[3]), PB[3]~PB[5], rsvd (PA[0]~PA[1])}	0x00
0xd3	QDEC_CHNB	R/W	[2:0] QDEC input pin select for channel b choose 1 of 8 pins for input channel b 0~7: {rsvd (PD[1]), rsvd (PD[3]), rsvd (PC[3]), PB[3]~PB[5], rsvd (PA[0]~PA[1])}	0x01
0xd6	QDEC_RST	R/W	[0]Write 1 to reset QDEC	0x00
0xd7	QDEC_DOUBLE	R/W	[0]QDEC mode select 0-Select common mode 1-Enable double accuracy mode	
0xd8	DATA_LOAD	R/W	[0]write 1 to load data when load completes it will be 0	

10 SAR ADC

The ST17H56 integrates one SAR ADC module, which can be used to sample analog input signals such as battery voltage and external analog input.

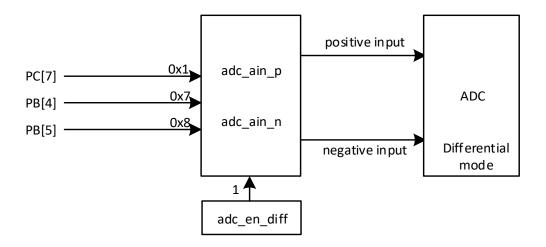


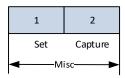
Figure 10-1 Block diagram of ADC

10.1 Power on/down

The SAR ADC is disabled by default. To power on the ADC, the analog register adc_pd (afe_0xfc<5>) should be set as 1b'0.

10.2 ADC clock

ADC clock is derived from external 24MHz crystal source, with frequency dividing factor configurable via the analog register adc_clk_div (afe_0xf4<2:0>).


ADC clock frequency (marked as F_{ADC clk}) = 24MHz/(adc_clk_div+1)

10.3 ADC control in auto mode

10.3.1 Set max state and enable channel

The SAR ADC supports Misc channel. The Misc channel consists of one "Set" state and one "Capture" state.

The analog register r_max_scnt (afe_0xf2<6:4>) serves to set the max state index. As shown below, the r_max_scnt should be set as 0x02.

- → The Misc channel can be enabled via r_en_misc (afe_0xf2<2>).
- RSSI signal sampling channel is multiplexed with the Misc channel.

Note: To sample RSSI signal, it's not needed to enable the Misc channel, and Misc channel input is automatically set as differential RSSI_n and RSSI_p. Both sampling time and resolution differ.

10.3.2 "Set" state

The length of "Set" state for Misc channel is configurable via the analog register r_max_s (afe 0xf1<3:0>).

"Set" state duration (marked as T_{sd}) = $r_max_s / 24MHz$.

"Set" state serves to set ADC control signals for Misc channel via corresponding analog registers, including:

- adc_en_diff: afe_0xec<6> (Misc channel). Must set as 1b'1 to select differential input mode.
- → adc_ain_n: afe_0xe8<3:0> (Misc channel). Select negative input in differential mode.

*Note: For RSSI signal sample channel, differential input mode is automatically selected, without the need to set afe_0xec<6>, while Misc channel input is automatically set as differential RSSI_n and RSSI_p without the need to set afe_0xe8.

- → adc_vref: afe_0xe7<5:4> (Misc channel). Set reference voltage V_{REF}. ADC maximum input range is the determined by the ADC reference voltage.
- adc_sel_ai_scale: afe_0xfa<7:6>. Set scaling factor for ADC analog input as 1 (default), or 1/8.
 By setting this scaling factor, ADC maximum input range can be extended based on the V_{REF}.
 For example, suppose the V_{REF} is set as 1.2V:

Since the scaling factor is 1 by default, the ADC maximum input range should be $0^{-1.2V}$ (negative input is GND) / $-1.2V^{-}+1.2V$ (negative input is ADC GPIO pin).

If the scaling factor is set as 1/8, in theory ADC maximum input range should change to $0^{\circ}9.6V$ (negative input is GND) / $-9.6V^{\circ}+9.6V$ (negative input is ADC GPIO pin). But limited by input voltage of the chip's PAD, the actual range is narrower.

→ adc_res: afe_0xec<1:0> (Misc channel). Set resolution as 8/10/12/14 bits.

*Note: For RSSI signal sample channel, resolution is fixed as 8bits without the need to set afe_0xec<1:0>.

ADC data is always 15-bit format no matter how the resolution is set. For example, 14 bits resolution indicates ADC data consists of 14-bit valid data and 1-bit sign extension bit.

→ adc_tsamp: afe_0xee<3:0> (Misc channel), afe_0xee<7:4> (RSSI signal sample channel). Set sampling time which determines the speed to stabilize input signals.

Sampling time (marked as T_{samp}) = adc_tsamp / $F_{ADC\ clk}$.

The lower sampling cycle, the shorter ADC convert time.

♦ pga boost, pga gain: Set PGA gain in Boost stage and Gain stage. See PGA section.

10.3.3 "Capture" state

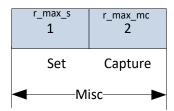
For the Misc channel, at the beginning of "Capture" state, run signal is issued automatically to start an ADC sampling and conversion process; at the end of "Capture" state, ADC output data is captured.

♦ The length of "Capture" state for Misc channel is configurable via the analog register r_max_mc[9:0] (afe_0xf1<7:6>, afe_0xef<7:0>).

"Capture" state duration for Misc channel (marked as T_{cd}) = $r_max_mc / 24MHz$.

- ♦ The "VLD" bit (afe_0xf8<7>) will be set as 1b'1 at the end of "Capture" state to indicate the ADC data is valid, and this flag bit will be cleared automatically.
- ♦ The 15-bit ADC output data for Misc channel can be read from the analog register adc_dat[14:0] (afe_0xf8<6:0>, afe_0xf7<7:0>).

Note: The total duration " T_{td} ", which is the sum of the length of "Set" state and "Capture" state for Misc channel available, determines the sampling rate.


Sampling frequency (marked as F_s) = 1 / T_{td}

10.3.4 Usage cases

10.3.4.1 Case 1: 1-channel sampling for Misc

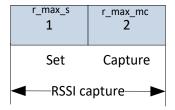
In this case, afe_0xf2<3:0> should be set as 0x4, so as to enable the Misc channel, the max state index should be set as "2" by setting afe_0xf2 as 0x2.

The total duration (marked as T_{td}) = $(1*r_max_s+1*r_max_mc) / 24MHz$.

10.3.4.2 Case 2: RSSI capture

RSSI signal sampling channel is shared with the Misc channel. It's not needed to set r_en_misc (afe_0xf2<2>) to enable Misc channel, while sampling time and resolution differ.

In this case, the rst_st_en (afe_0xf4<7>) may be set as 1b'1, which means when RSSI (Received Signal Strength Indication) signal is ready for measurement, and the state machine will be restarted to ensure that the measurement starts from the "Set" state.


In the "Set" state, the adc_tsamprssi (afe_0xee<7:4>) should be set to configure sampling time.

The sampling resolution is automatically set as 8bits.

RSSI capture channel is automatically set as differential RSSI_n and RSSI_p input.

The other configurations are the same as the Misc channel.

The total duration (marked as T_{td}) = $(1*r_max_s+1*r_max_mc) / 24MHz$.

10.3.4.3 Case 3 with detailed register setting

This case introduces the register setting details for Misc channel.

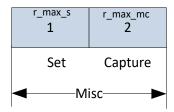


Table 10-1 Overall register setting

Function	Register setting
Power on the ADC	afe_0xfc<5> = 1b'0
6.15 (426.1.16) 4441	afe_0xf4<2:0> = 5
Set F _{ADC_clk} (ADC clock frequency) as 4MHz	F _{ADC_clk} = 24MHz/(5+1)=4MHz
Enable the Misc channel	afe_0xf2<3:0> = 0x4
Set the max state index as "2"	afe_0xf2<6:4> = 0x2

Table 10- 2 Register setting for M channel

Function	Register setting for Misc			
6.17.116.11.1.1.1.1.1.1	afe_0xf1<3:0> = 10			
Set T _{sd} ("Set" state duration)	$T_{sd} = r_max_s/24MHz = 10/24MHz = 0.417us$			
Set T ("Centure" state direction)	afe_0xf1<7:6>=1, afe_0xef<7:0>=0xea			
Set T _{cd} ("Capture" state duration)	$T_{cd} = r_max_mc[9:0]/24MHz = 490/24MHz = 20.417us$			
T _{td} (total duration)	$T_{td} = (1*r_max_s+1*r_max_mc) / 24MHz = 500/24MHz = 20.83us$			
F _s (Sampling frequency)	$F_s = 1 / T_{td} = 24MHz/500 = 48kHz$			
Set differential input	afe_0xec<6>=1			
Cat input sharp al	afe_0xe8=0x8f			
Set input channel	Select PB[5] and GND as positive input and negative input			
Set reference voltage V _{RFF}	afe_0xe7<5:4>=2			
Set reference voltage v _{REF}	V _{REF} =1.2V			
	afe_0xfa<7:6>=0			
Set scaling factor for ADC analog input	scaling factor: 1			
	ADC maximum input range: 0 ~ +1.2V			
Set resolution	afe_0xec<1:0>=3			
Set resolution	resolution: 14bits			
Set T _{samp} (determines the speed to	afe_0xee<3:0>=3			
stabilize input before sampling)	$T_{samp} = adc_tsamp / F_{ADC_clk} = 12/4MHz=3us$			

10.4 Register table

Table 10-3 Register table related to SAR ADC

Address	Mnemonic	Default value	Description
afe_0xe7<5:4>	adc_vrefm	00	Select V _{REF} for Misc channel 0x0: rsvd 0x1: 0.9V 0x2: 1.2V 0x3: rsvd
afe_0xe8<3:0>	adc_ain_m_n	0010	Select negative input for Misc channel: 0x0: No input 0x1: PC[7] 0x2: rsvd (PA[7]) 0x3: rsvd (PB[0]) 0x4: rsvd (PB[1]) 0x5: rsvd (PB[2]) 0x6: rsvd (PB[3]) 0x7: PB[4] 0x8: PB[5] 0x9: rsvd (PB[6]) 0xa: rsvd (PB[7]) 0xb: pga_channel_n<0> (PGA negative output) 0xc: rsvd 0xd: rsvd 0xd: rsvd 0xf: Ground
afe_0xe8<7:4>	adc_ain_m_p	0000	Select positive input for Misc channel: 0x0: No input 0x1: PC[7] 0x2: rsvd (PA[7]) 0x3: rsvd (PB[0]) 0x4: rsvd (PB[1]) 0x5: rsvd (PB[2]) 0x6: rsvd (PB[3]) 0x7: PB[4] 0x8: PB[5] 0x9: rsvd (PB[6]) 0xa: rsvd (PB[7]) 0xb: pga_channel_p<0> (PGA positive output) 0xc: rsvd 0xd: rsvd 0xd: rsvd 0xf: rsvd

Address	Mnemonic	Default value	Description
afe_0xec<1:0>	adc_resm	11	Set resolution for Misc channel 0x0: 8bits 0x1: 10bits 0x2: 12bits 0x3: 14bits
afe_0xec<6>	adc_en_diffm	0	Select input mode for Misc channel. 0: rsvd 1: differential mode
afe_0xee<3:0>	adc_tsampm	0001	Number of ADC clock cycles in sampling phase for Misc channel to stabilize the input before sampling: 0x0: 3 cycles 0x1: 6 cycles 0x2: 9 cycles 0x3: 12 cycles 0xf: 48 cycles
afe_0xee<7:4>	adc_tsamprssi	0000	
afe_0xef<7:0>	r_max_mc[7:0]	0x0f	r_max_mc[9:0]serves to set length of "capture" state for Misc channel.
afe_0xf1<3:0>	r_max_s	0110	r_max_s serves to set length of "set" state for Misc channel.
afe_0xf1<7:6>	r_max_mc[9:8]	00	Note: State length indicates number of 24MHz clock cycles occupied by the state.
afe_0xf2<2>	r_en_misc	1	Enable Misc channel sampling. 1: enable
afe_0xf2<3>	rsvd	0	rsvd
afe_0xf2<6:4>	r_max_scnt	010	Set total length for sampling state machine (i.e. max state index)
afe_0xf4<2:0>	adc_clk_div	011	ADC clock (derive from external 24MHz crystal) ADC clock frequency = 24MHz/(adc_clk_div+1)
afe_0xf4<7>	rst_st_en	0	1: enable state machine restart, 0: disable
afe_0xf5<7:0>	rsvd	0x10	rsvd
afe_0xf6<7:0>	rsvd	0x11	rsvd
afe_0xf7<7:0>	adc_dat[7:0]	0x00	Read only, Misc adc dat[7:0]
afe_0xf8<7:0>	adc_dat[15:8]	0x00	Read only [7]: vld, ADC data valid status bit (This bit will be set as 1 at the end of capture state to indicate the ADC data is valid, and will be cleared when set state starts.) [6:0]: Misc adc_dat[14:8]
afe_0xf9<3:2>	rsvd	00	rsvd
afe_0xf9<5>		0	Must be set as 1b'1

Address	Mnemonic	Default value	Description
afe_0xfa<7:6>	adc_sel_ai_scale	0	Analog input pre-scaling select sel_ai_scale[1:0]: scaling factor 0x0: 1 0x1: rsvd 0x2: rsvd 0x3: 1/8
afe_0xfc<4>	rsvd	0	rsvd
afe_0xfc<5>	adc_pd	1	Power down ADC 1: Power down 0: Power up

11 PGA

The ST17H56 integrates a PGA (Programmable Gain Amplifier) module.

The PGA consists of Boost stage pre-amplifier and Gain stage post-amplifier.

The PGA is used in combination with the ADC module: By adjusting the gain of pre-amplifier and post-amplifier, the PGA can amplify differential analog input signals from specific pins before ADC sampling.

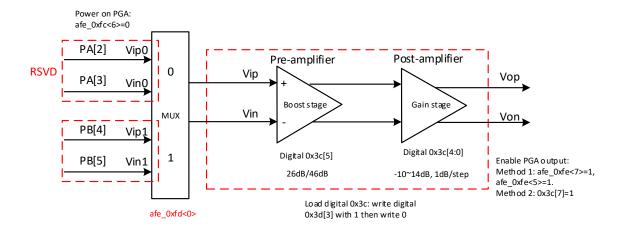


Figure 11-1 Block diagram of PGA

*Note:

Vip<0>, Vin<0>: Positive input 0 and Negative input 0;

Vip<1>, Vin<1>: Positive input 1 and Negative input 1;

Vop, Von: Positive and Negative output.

11.1 Power on/down

The PGA is disabled by default.

To power on the PGA, the analog register pga_pd (afe_0xfc<6>) should be set as 1b'0.

11.2 Select input channel

The analog register pga_sel_vin (afe_0xfd<0>) should be set as 1b'1 to select PB[4] and PB[5] as positive and negative input, respectively.

11.3 Adjust gain

The PGA gain is adjustable via digital register 0x3c:

- ♦ Address 0x3c[5] serves to set gain for the pre-amplifier as 26dB (1b'0, default) or 46dB (1b'1).
- → Address 0x3c[4:0] serves to set gain for the post-amplifier as -10dB (0x0, default) ~ 14dB (0x18) with step of 1dB.
- ♦ The total PGA gain should be the sum of the two gain values.

11.4 Enable/Disable PGA output

User can enable/disable PGA output by using either analog registers or digital register.

- ♦ Use analog register "pga_mute_m_en" (afe_0xfe<7>) and "pga_mute_m" (afe_0xfe<5>). User can enable PGA output by setting both afe 0xfe<7> and afe 0xfe<5> as 1b'1.
- ♦ Use digital register 0x3c[7]. User can also enable PGA output by setting 0x3c[7] as 1b'1.
- ♦ Digital register 0x3d[4] indicates whether PGA output is enabled or disabled.

11.5 Load digital register 0x3c

User should write digital register 0x3d[3] with 1b'1 and 1b'0 to load the value of digital register 0x3c, so that the configuration of 0x3c can take effect.

11.6 Register table

Table 11- 1 Analog register table related to PGA

Address	Mnemonic	Default	Description						
	Analog register								
afe_0xfc<6>	pga_pd	1	Power down PGA 1: Power down, 0: Power up						
afe_0xfd<0>	pga_sel_vin	0	Select PGA differential input source. Gate off all input with pga_pd. 0: Rsvd (select PA[2] (positive) and PA[3] (negative)) 1: select PB[4] (positive) and PB[5] (negative)						
afe_0xfe<7>	pga_mute_m_en	0	Enable using analog register pga_mute_m 0: disable using analog register afe_0xfe<5> 1: enable using analog register afe_0xfe<5>						
afe_0xfe<5>	pga_mute_m	0	When afe_0xfe<7> = 0x1, this bit can be used 0: not mute pga 1: mute pga						
			Digital register						
0х3с		0x00	[4:0]: set gain for the post-amplifier 0x0~0x18: -10dB~14dB, step 1dB [5]: set gain for the pre-amplifier 0: 26dB, 1: 46dB [7]: mute PGA using digital register						
0x3d		0x00	[3]: write 1 and then write 0 to trigger PGA load 0x3c value [4]: read only indicate PGA mute release status 0: not release 1: release						

12 AES

The ST17H56 embeds AES module with encryption and decryption function. The input 128bit plaintext in combination of key is converted into the final output ciphertext via encryption; the 128bit ciphertext in combination of key can also be converted into 128bit plaintext via decryption.

The AES hardware accelerator provides automatic encryption and decryption. It only takes (1000*system clock cycles) to implement AES encryption/decryption. Suppose system clock is 20MHz, the time needed for AES encryption/decryption is 50us.

12.1 RISC mode

For RISC mode, configuration of related registers is as follows:

- 1) Set the value of key via writing registers AES_KEY0~ AES_KEY15 (address 0x550~0x55f).
- 2) Set operation method of AES module via register AES_CTRL: set address 0x540[0] as 1b'1 for decryption method, while clear this bit for encryption method.
- 3) For encryption method, write registers AES-DAT0~ AES-DAT3 (address 0x548~0x54b) for four times to set the 128bit plaintext. After encryption, the 128bit ciphertext can be obtained by reading address 0x548~0x54b for four times.
- 4) For decryption method, write registers AES-DAT0~ AES-DAT3 (address 0x548~0x54b) for four times to set the 128bit ciphertext. After decryption, the 128bit plaintext can be obtained by reading address 0x548~0x54b for four times.
- 5) Address 0x540 bit[1] and bit[2] are read only bits: bit[1] will be cleared automatically after quartic writing of address 0x548~0x54b; bit[2] will be set as 1 automatically after encryption/decryption, and then cleared automatically after quartic reading of address 0x548~0x54b.

12.2 AES-CCM

The AES-CCM (Counter with the CBC-MAC) mode is disabled by default. AES output is directly determined by current encryption and decryption, irrespective of previous encryption and decryption result.

If 0x540[7] is set as 1b'1 to enable AES-CCM mode, AES output will also take previous encryption and decryption result into consideration.

12.3 Register table

Table 12-1 Register table related to AES

Address	Mnemonic	Туре	Description	Reset Value
			[0] Select decrypt/encrypt.	
			1: decrypt, 0: encrypt	
			[1] Read-only.	
			1: input data needed,	
0x540	AES_CTRL	R/W	0: input data ready.	00
			[2] Read-only.	
			0: output data not ready,	
			1: output data ready.	
			[7] 1: enable AES-CCM mode.	
0x548	AES-DAT0	R/W	Input/Output Data byte 0	
0x549	AES-DAT1	R/W	Input/Output Data byte 1	*No power on
0x54a	AES-DAT2	R/W	Input/Output Data byte 2	reset
0x54b	AES-DAT3	R/W	Input/Output Data byte 3	
0x550	AES_KEY0	R/W	[7:0] KEY0	00
0x551	AES_KEY1	R/W	[7:0] KEY1	00
0x552	AES_KEY2	R/W	[7:0] KEY2	00
0x553	AES_KEY3	R/W	[7:0] KEY3	00
0x554	AES_KEY4	R/W	[7:0] KEY4	00
0x555	AES_KEY5	R/W	[7:0] KEY5	00
0x556	AES_KEY6	R/W	[7:0] KEY6	00
0x557	AES_KEY7	R/W	[7:0] KEY7	00
0x558	AES_KEY8	R/W	[7:0] KEY8	00
0x559	AES_KEY9	R/W	[7:0] KEY9	00
0x55a	AES_KEY10	R/W	[7:0] KEY10	00
0x55b	AES_KEY11	R/W	[7:0] KEY11	00
0x55c	AES_KEY12	R/W	[7:0] KEY12	00
0x55d	AES_KEY13	R/W	[7:0] KEY13	00
0x55e	AES_KEY14	R/W	[7:0] KEY14	00
0x55f	AES_KEY15	R/W	[7:0] KEY15	00

^{*}Note: Addresses 0x548~0x54b won't be reset after power on.

13 Key Electrical Specifications

Note: The electrical characteristics currently listed in this section are target specifications and only supplied for reference. Some data may be updated according to actual test results.

13.1 Absolute maximum ratings

Table 13-1 Absolute Maximum Ratings

Characteristics	Sym.	Min.	Max	Unit	Test Condition
Supply Voltage	VDD	-0.3	4.3	V	All AVDD and DVDD pin must have the same voltage
Voltage on Input Pin	V _{In}	-0.3	VDD+ 0.3	٧	
Output Voltage	V _{Out}	0	VDD	V	
Storage temperature Range	T_{Str}	-65	150	°C	
Soldering Temperature	T_{SId}		260	°C	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

13.2 Recommended operating condition

Table 13-2 Recommended operation condition

Item	Sym.	Min	Тур.	Max	Unit	Condition
Power-supply voltage	VDD	1.9	3.3	3.6	V	TSSOP16 package ¹
Supply rise time (from 0V to 1.9V)	t_R			17.5 ^{*2}	ms	
Operating Temperature Range	T_{Opr}	-40		85	°C	

¹ Note: By changing bonding wire, the TSSOP16 package can also support the power supply range of 1.9~4.3V.

² Note: For the rise time, if the reset pin cap is 1uF, the supply rise time to 1.9V is recommend to be smaller than 17.5ms as listed above. If larger cap is used, the supply rise time can increase proportionally. If the supply rise time exceeds the max allowed time, especially if the rise from the POR threshold in Section 14.4 to 1.9V is slow, the internal LDO may not settle to the desired states during this period and may lead to unexpected digital logic behavior or worsened RF performance. The rising slope below the POR threshold does not affect much and can be slower.

13.3 Electrical characteristics

Table 13-3 Electrical characteristics

(Test condition: VDD=3.3V and T=25 $^{\circ}$ C for Typ. value)

Mode	Sym.	Min	Тур.	Max	Unit	Condition	
			14.5		A	Continuous TX transmission,	
Tx	I _{Tx}		14.5		mA	OdBm output power	
			25		mA	maximum output power	
Rx	I _{Rx}		13.6		mA	Continuous Rx reception	
Command			6.8	20	uA	IO wakeup	
Suspend	I _{Susp}		8	20	uA	32k RC wakeup	
Doon sloon			1.9		uA	internal 32kHz RC OSC off	
Deep sleep	I _{Dps}		3		uA	internal 32kHz RC OSC on	

13.4 General characteristics

Table 13-4 General characteristics

Item	Sym.	Min.	Тур.	Max.	Unit	Condition					
Power-up/ Power-down sequence (see section 2.6.1)											
VDD voltage when V _{UVLO} turns to high level	V_{POR}		1.70		V						
VDD voltage when V _{UVLO} turns to low level	V_{Pdn}		1.62		V						
Delay counter value	T_{PwRst}	Configura	ble via analo	og register a	ife_0x20						
Timing for work	king mode t	ransition (s	ee section 2	.4.3 Po	wer-saving	g mode)					
Transition time needed											
from suspend mode to	T_{SP2A}		500		us						
the active mode											
Transition time needed											
from deep sleep mode	-		500								
with SRAM retention to	T_{DS2A}		500		us						
active mode											
Transition time needed											
from deep sleep mode											
without SRAM			1		ms						
retention to active											
mode											

13.5 Inputs/Outputs characteristics

Datasheet for ST17H56

Table 13-5 Inputs/Outputs Characteristics

Item	Sym.	Min	Тур.	Max	Unit	Condition
		Digital inpo	uts/outpu	ts		
Input high voltage	VIH	0.7VDD		VDD	V	
Input low voltage	VIL	VSS		0.3VDD	V	
Output high voltage	VOH	0.9VDD		VDD	V	
Output low voltage	VOL	VSS		0.1VDD	V	

13.6 Pull-up/Pull-down resistor

Table 13- 6 Pull-up/Pull-down resistor (over process and $T=-40^++85^{\circ}C$)

Pull-up/Pull-down resistor	Min	Max	Condition
	8	11	VDD=3.3~4.3V
x1 pull-up	10	12	VDD=3V
	16	19	VDD=1.9V
	128	136	VDD=3.3~4.3V
x10 pull-down	174	188	VDD=3V
	465	496	VDD=1.9V
	756	785	VDD=3.3~4.3V
x100 pull-up	953	1003	VDD=3V
	2011	2246	VDD=1.9V

13.7 SPI characteristics

Table 13-7 SPI characteristics

(over process, voltage 1.9~4.3V, and T=-40~+85 $^{\circ}\text{C}$)

Item	Sym.	Min	Тур.	Max	Unit	Condition
CK frequency	F _{CK}			4	MHz	Slave
CK duty cycle clock			50		%	Master
DI setup time		30			ns	Slave
Di setup time		90			ns	Master
DI hold time		10			ns	Slave
Di fiola time		90			ns	Master
CK low to DO valid				30	ns	Slave
time				120	ns	Master
CN setup time		60			ns	Master/Slave
CN high to DI tri-state*3					ns	Master

DS-ST17H56-E1 80 Ver0.8.0

³ Note: Master actively stops reading during transmission, and Slave releases its driver DO and turns to tri-state.

13.8 I2C characteristics

Table 13-8 I2C characteristics

(over process, voltage 1.9~4.3V, and T=-40~+85 $^{\circ}$ C)

ltous	S	Standa	rd mode	Fast m	ode	l lait	Condition
Item	Sym.	Min	Max	Min	Max	Unit	Condition
SCL frequency	F _{SCL}		100		400	kHz	
Rise time of SDA and SCL signals	T _R		1000		300	ns	
Fall time of SDA and SCL signals	T _F		300		300	ns	
START condition hold time	T _{HD;STA}	4		0.6		us	
Data hold time	$T_{HD;DAT}$	0	3.45		0.9	us	
Data setup time	T _{SU;DAT}	250		100		ns	
STOP condition setup time	T _{su;sto}	4		0.6		us	

13.9 RF performance

Table 13-9 RF characteristics

Item		Min	Тур.	Max	Unit	Condition			
RF frequency range		2380		2500	MHz	Programmable in 1MHz step			
Data rate	1Mbps, ±250k 2Mbps, ±500k								
BLE	1Mbps RF_Rx	performance	(±250kHz	deviation,	PER≤30.8	%)			
Sensitivity	1Mbps		-90		dBm				
Frequency Offset Tolerance		-300		+300	kHz				
Co-channel rejection			5		dB	Wanted signal at -67dBm			
	±1MHz offset		0		dB				
In-band rejection C/I	±2 MHz offset		-30		dB				
(modulation interference)	±3 MHz offset		-34		dB	Wanted signal at -67dBm			
	>4MHz offset		-40		dB				
Image rejection			-34		dB	Wanted signal at -67dBm			
	ВІ	E 1Mbps RF_	Tx perforr	nance					
Output power, maximum setting			7		dBm				
Output power, minimum setting			-20		dBm				
Programmable output power range			27		dB				
Modulation 20dB bandwidth			1.5		MHz				
Adjacent channel	F ₀ ±2MHz		57		dBc				
power ratio (ACPR)	F ₀ ±4MHz		64		dBc				
power ratio (Act II)	F ₀ ±(>4MHz)		66		dBc				
Inband Emission	2MHz		-41		dBm				
	>=3MHz		-42		dBm				
Frequency Deviation F1avg		225		275	kHz				
Frequency Deviation F2Max		185			kHz				
Frequency Deviation F2Avg/F1Avg		0.8							

Item		Min	Тур.	Max	Unit	Condition				
Spurious Emission	f < 1GHz		-70		dBm	T=25℃, Max Output				
Conducted Measurement	f > 1GHz		-68		dBm	Power, Max Voltage				
BLE 2Mbps RF_Rx performance (±500kHz deviation, PER≤30.8%)										
Sensitivity 2Mbps -86.5 dBm										
Frequency Offset Tolerance	Liniops	-200	30.3	+200	kHz					
Co-channel rejection			7		dB	Wanted signal at -67dBm				
	±2MHz offset		-4		dB					
In-band rejection C/I (modulation	±4MHz offset		-31		dB	Wanted signal at				
interference)	±6MHz offset		-38		dB	-67dBm				
	≥8MHz offset		-42		dB					
Image rejection			-40		dB	Wanted signal at -67dBm				
	BL	.E 2Mbps RF_	Tx perfori	mance						
Output power, maximum setting			7		dBm					
Output power, minimum setting			-20		dBm					
Programmable output power range			27		dB					
Modulation 20dB bandwidth			2.6		MHz					
Adjacent channel	F ₀ ±4MHz		53		dBc					
power ratio	F ₀ ±6MHz		63		dBc					
(ACPR)	F ₀ ±(>6MHz)		62		dBc					
Frequency Deviation F1avg		450		550	KHz					
Frequency Deviation F2Max		370			KHz					
Frequency Deviation F2Avg/F1Avg		0.8								
Spurious Emission Conducted	f < 1GHz		-70		dBm	T=25°C, Max Output				
Measurement	f > 1GHz		-68		dBm	Power, Max Voltage				
		R	SSI							
RSSI range		-88		-30	dBm	@BLE mode				
RSSI Resolution			+/-4		dB					

13.10 Crystal characteristics

Table 13- 10 Crystal characteristics

(Test condition: VDD=3.3V, T=25 °C)

Item	Sym.	Min	Тур.	Max	Unit	Condition
24MHz crystal						
Nominal frequency (parallel resonant)	f _{NOM}		24		MHz	
Frequency tolerance	f_{TOL}	-20		+20	ppm	
Load capacitance	C_L	5	12	18	pF	Programmable on chip load cap (PV @ 25°C for min and Max)
Equivalent series resistance	ESR		40	80	ohm	PVT

13.11 RC oscillator characteristics

Table 13-11 RC oscillator characteristics

(Test condition: VDD=3.3V, T=25 $^{\circ}$ C)

Item	Sym.	Min	Тур.	Max	Unit	Condition
24MHz RC oscillator						
Nominal frequency	f _{NOM}		24		MHz	
Frequency tolerance	f _{TOL}		0.07		%	With calibration
32kHz RC oscillator						
Nominal frequency	f _{NOM}		32		kHz	
Frequency tolerance	f_{TOL}		0.45		%	With calibration
Calibration time			3		ms	

13.12 ADC characteristics

Table 13-12 ADC characteristics

(over process, voltage 1.9 $^{\sim}$ 3.6V, and T=-40 $^{\sim}$ +85 $^{\circ}$ C)

Item	Sym.	Min	Тур.	Max	Unit	Condition
Differential nonlinearity	DNL				LSB	
Integral nonlinearity	INL				LSB	
Signal-to-noise ratio	SNR				dB	fin=1kHz, fS=16kHz
Total harmonic distortion	THD				dB	fin=628.66Hz, fS=100kHz
Effective Number of Bits	ENOB				bits	
Sampling frequency	Fs				kHz	

13.13 ESD characteristics

Table 13-13 HBM/CDM results

Model	Pin Combinations	Value	V Class
	IO vs VSS(+)	+4 kV	
	IO vs VSS(-)	-4 kV	
	IO vs VDD(+)	+4 kV	
	IO vs VDD(-)	-4 kV	JESD22-A114F
HBM	IO vs IO(+)	+4 kV	Class-3A: 4000 V - <8000 V
	IO vs IO(-)	-4 kV	
	VDD vs VSS(+)	+4 kV	
	VDD vs VSS(-)	-4 kV	
CDM	ALL Pin(+)	+500 V	JEDEC22-C101F
	ALL Pin(-)	-500 V	Class C2: 500 V - <1000 V

Table 13- 14 Latch-Up I-test result

Mode	Spec	Value	Pass/Fail
Positive	+100 mA	+100 mA	Pass
Negative	-100 mA	-100 mA	Pass

Table 13- 15 Latch-Up V_{supply} over voltage test result

Voltage	Mode	Spec	Value	Pass/Fail
3.3 V	Positive	1.5V _{max}	5.445 V	Pass

13.14 Storage condition

The ST17H56 series is applicable to Moisture Sensitivity Level 3 (based on JEDEC Standard).

- 1) Calculated shelf life in sealed moisture barrier bag (MBB): 12 months at <40°C and <90% relative humidity (RH)
- 2) Peak package body temperature: 260°C
- 3) After bag is opened, devices that will be subjected to reflow solder or other high temperature process must be
 - ♦ Mounted within: 168 hours of factory conditions ≤30°C/60% RH, or
 - ♦ Stored at <10% RH</p>
- 4) Devices require bake, before mounting, if:
 - ♦ Humidity Indicator Card reads >10% when read at 23 ± 5°C
 - ♦ Both of the conditions in item 3 are not met

5) If baking is required, devices may be baked for 24 hours at 125 ± 5 °C

Note: If device containers cannot be subjected to high temperature or shorter bake times are desired, please refer to IPC/JEDEC J-STD-033 for bake condition.

14 Application

14.1 Application example for ST17H56

14.1.1 Schematic

TBD.

14.1.2 BOM (Bill of Material)

TBD.